logo search
Асмус_Логика_2001

§ 6. Первая и наиболее резко бросающаяся в глаза черта, отличающая индуктивные умозаключения от силлогизмов, состоит в том, что посредством индукции из частных посылок могут получаться общие выводы.

В силлогистических умозаключениях это невозможно. Ни в одном силлогизме –какова бы ни была его фигура и каков бы ни был её модус – никакое общее заключение никогда не может быть получено из частных посылок. Если обе посылки частные, то силлогистический вывод вовсе невозможен. Если одна из посылок силлогизма частная, а другая общая, то правильный силлогистический вывод может быть только частный. Но даже если обе посылки силлогизма общие, то вывод, или заключение, далеко не всегда будет суждением общим. Так, в простых категорических силлогизмах третьей фигуры по модусам Darapti и Felapton (а также в силлогизмах четвёртой фигуры по модусам Bramantip и Fesapo), несмотря на то, что обе посылки общие, заключение получается всего лишь частное. Из всех девятнадцати правильных модусов простого категорического силлогизма только в пяти модусах получается в заключении общий вывод при двух общих посылках.

Модусы эти: Barbara, Celarent первой фигуры, Сеsаrе, Camestres – второй и Camenes – четвёртой фигуры.

Напротив, в индуктивных умозаключениях, как видно из приведённых примеров, частный характер посылок не только не препятствует получению общего вывода, но индуктивные умозаключения – именно те умозаключения, в которых частные посылки дают основание для общих выводов.

§ 7. В тесной связи с этой чертой стоит другая черта индуктивных умозаключений, отличающая эти умозаключения от силлогизмов. В силлогизмах достоверные посылки всегда приводят к столь же достоверным выводам. Силлогистические выводы лишены достоверности только при условии, если недостоверны посылки силлогизма.

Например, я имею посылки:

Все больные гриппом – распространители гриппозной инфекции.

Михайлов, повидимому, болен гриппом.

Из этих посылок может быть получен не достоверный, но всего лишь вероятный вывод:

Михайлов, повидимому, – распространитель гриппозной инфекции.

Однако вероятный характер заключения зависит здесь не от того, что это умозаключение – силлогизм, но лишь от того, что меньшая посылка этого силлогизма в данном случае оказалась по модальности не аподиктическим, но всего лишь проблематическим суждением.

Поэтому, как только вместо этой посылки мы возьмём другую – достоверную, – заключение силлогизма тотчас же из проблематического станет вполне достоверным:

Все больные гриппом–распространители гриппозной инфекции.

Михайлов болен гриппом.

След., Михайлов–распространитель гриппозной инфекции.

И так обстоит дело во всех простых категорических силлогизмах.

В каждом простом категорическом силлогизме при условии, если только его посылки истинны и если заключение соответствует действительным отношениям между понятиями посылок, заключение всегда будет достоверной истиной. Если истинно, что «все утконосы – яйцекладущие» и что «все утконосы – млекопитающие», то заключение «некоторые млекопитающие – яйцекладущие» будет вполне достоверно. Здесь исключена всякая возможность заключать иначе, т. е. заключать, например, что, хотя все утконосы – яйцекладущие и хотя все они – млекопитающие, тем не менее млекопитающие никогда не бывают яйцекладущими. Кто допустил бы подобную возможность, т. е. стал бы отрицать достоверность вывода, тот немедленно оказался бы в противоречии с признанными им самим посылками. Но и в условных силлогизмах, как было уже показано, условной является отнюдь не логическая связь между посылками и заключением, но лишь допущение, от которого зависит следствие условной посылки. Даже в чисто условных силлогизмах, где и обе посылки и заключение – суждения условные, логическая связь между посылками и заключением – совершенно необходимая и достоверная. Допустим, что из посылок – «Если А есть В, то С есть D» и «Если С есть D, то Е есть F» – мы заключаем: «Если А есть В, то Е есть F». В этом силлогизме, несмотря на то, что обе посылки и заключение – суждения условные, логическая связь между посылками и заключением есть связь совершенно необходимая. В этом смысле вывод здесь вполне достоверный. Вывод не утверждает, что А есть В. Возможно, что А не есть В. Но вывод имеет в виду не это. Вывод говорит, что при условии, если А есть В, Е необходимо должно быть F. Иначе говоря, если условия, указанные в посылках, выполнены, то Е не может не быть F. Поэтому всякая попытка, согласившись с посылками этого силлогизма, не соглашаться с его заключением невозможна.