§ 15. Закон противоречия в разъяснённом выше его смысле справедлив относительно всех противоположных друг другу высказываний, независимо от вида самой противоположности.
Противоположность между суждениями бывает либо противоречащая, либо контрарная. Противоречащей противоположность будет: а) в случае, если одно из противоположных высказываний общее, а другое – частное, и б) в случае, когда оба противоположных высказывания единичные. Например, высказывания «все планеты имеют атмосферу» и «некоторые планеты не имеют атмосферы» находятся между собой в отношений противоречащей противоположности: они друг другу противоположны, т. е. одно из них утверждает об одном классе предметов то, что об этом же классе предметов в то же самое время отрицает другое, но при этом одно из них – общее («все планеты имеют атмосферу»), другое же – частное «некоторые планеты не имеют атмосферы»). Другой пример противоречащей противоположности: «эта звезда – Сириус» и «эта звезда – не Сириус». Здесь оба противоположных высказывания – единичные, т. е. относятся к одному единственному предмету.
§ 16. Контрарной противоположность будет в том случае, если противоположные высказывания оба общие. Например, высказывания «все пауки – насекомые» и «ни один паук не есть насекомое» находятся между собой в отношении контрарной противоположности: и утверждение и отрицание являются здесь высказываниями общими.
§ 17. Какова бы ни была противоположность между высказываниями – закон противоречия сохраняет свою силу как для противоречащей, так и для контрарной противоположности. Согласно этому закону не могут быть сразу истинными ни такие два высказывания, как «все планеты имеют атмосферу», «некоторые планеты не имеют атмосферы», ни такие два высказывания, как «все планеты имеют атмосферу», «ни одна планета не имеет атмосферы», ни такие, наконец, как «эта звезда – Сириус», «эта звезда – не Сириус».
Закон исключённого третьего
§ 18. Мы установили, что согласно закону противоречия два противоположных друг другу высказывания не могут быть оба сразу истинными. Но не могут ли противоположные друг другу высказывания оказаться оба сразу ложными?
Здесь надо различать три случая. 1) Если противоположность контрарная, т. е. оба высказывания – общие, то они могут оказаться оба сразу ложными.
Рассмотрим два высказывания: «все планеты имеют атмосферу» и «ни одна планета не имеет атмосферы». Противоположность между ними – контрарная, так как утверждение и отрицание здесь – высказывания общие. В этом примере оба высказывания – ложные. Ложно и то, что «все планеты имеют атмосферу», ложно и то, что «ни одна планета не имеет атмосферы». Истина здесь состоит в третьем, а именно в том, что часть планет (например, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун) имеет атмосферу, другая же часть (например, Меркурий) её не имеет.
Почему в случае контрарной противоположности оба противоположных высказывания могут, как и в этом нашем примере, оказаться оба сразу ложными?
Происходит это потому, что контрарная противоположность– самая крайняя из всех возможных. Если один утверждает, что все планеты имеют атмосферу, а другой, – что ни одна планета не имеет атмосферы, то нельзя представить себе между обоими этими высказываниями противоположность большую, чем та, какую они выражают.
Однако два контрарных высказывания могут оказаться оба сразу ложными. Они будут оба сразу ложными, если между крайними случаями, которые выражаются обоими контрарными высказываниями, имеются случаи, образующие переход между ними, стоящие посередине. Между крайними утверждениями «все планеты имеют атмосферу» и «ни одна планета не имеет атмосферы» возможно третье утверждение: «некоторые планеты имеют атмосферу, а некоторые не имеют её».
Из того, что два контрарных высказывания могут оба сразу оказаться ложными, отнюдь не следует, что они во всех случаях, всегда и непременно окажутся ложными. Возможны и такие случаи, когда одно из контрарных высказываний –ложное, а другое – истинное. Так, из двух контрарных высказываний – «все планеты солнечной системы вращаются вокруг солнца» а «ни одна планета солнечной системы не вращается вокруг солнца» – первое истинно, а второе ложно.
Контрарные высказывания не бывают оба сразу ложными в случаях, когда противоположность, выражаемая общими высказываниями, может быть только крайней, т. е. когда между обоими крайними случаями, выражаемыми в обоих высказываниях, нет в действительности переходных случаев.
§ 19. 2) Если противоположность между двумя высказываниями противоречащая, т. е. одно из высказываний – общее, а другое – частное, то такие два высказывания не могут оказаться оба сразу ложными. В этом случае вступает в силу третий закон логического мышления – закон исключённого третьего.
Согласно этому закону из двух противоречащих друг другу утверждений об отношении двух понятий одно утверждение – и только одно – необходимо должно быть истинным, так что невозможно никакое третье истинное утверждение об отношении, между этими понятиями.
Так, из противоречащих друг другу утверждений об отношении понятий «дельфины» и «млекопитающие», а именно – «все дельфины – млекопитающие», «некоторые дельфины – не млекопитающие» – одно необходимо должно быть истинным. Или истинно, что «все дельфины – млекопитающие», или истинно, что «некоторые (т. е. по крайней мере некоторые) дельфины–не млекопитающие».
Так как, по закону противоречия, два противоречащих друг другу утверждения не могут быть оба сразу истинными, то истинность одного из таких утверждений означает ложность другого и–наоборот. Но этого мало. Закон исключённого третьего не только говорит, что одно из противоречащих утверждений необходимо должно быть истинным. Закон исключённого третьего говорит, кроме того, что истина лежит только в пределах этих двух утверждений. Кроме этих двух утверждений невозможно никакое третье об отношении между теми же понятиями, которое было бы истинным. В случае противоречащих суждений рассуждать приходится по схеме: «или–или. Третье не дано» (tertium non datur).
Закон исключённого третьего называется так потому, что законом этим исключается истинность какого бы то ни было третьего высказывания, кроме наших двух – утверждения и отрицания, между которыми мы и должны сделать выбор.
Законом исключённого третьего обосновывается требование, которое может быть выражено так: выбирай одно из двух противоречащих друг другу высказываний, так как одно из них непременно должно быть истинным и так как не существует никакого третьего, которое могло бы оказаться истинным вместо этих двух.
§ 20. Закон исключённого третьего, так же как и закон противоречия, не говорит, какое именно из двух противоречащих высказываний будет ложным и какое истинным. Решение этого последнего вопроса требует в каждом случае особого исследования. Закон исключённого третьего только указывает, что правильный ответ на поставленный вопрос – при условии, если самый вопрос сформулирован точно, – заключается в одном из двух противоречащих друг другу высказываний, но не отвечает на самый вопрос. Из закона этого следует необходимость выбирать одну из двух противоречащих противоположностей, но закон исключенного третьего сам по себе не указывает, какую именно. Вопрос этот в каждом особой случае требует особого рассмотрения.
§ 21. Закон исключённого третьего безусловно применим к любым двум противоречащим высказываниям. Относительно таких высказываний всегда остаётся в силе, что одно из них должно быть истинным. Но закон этот не имеет силы по отношению к контрарной противоположности. Здесь остаётся возможным, что истина не заключается ни в одном из двух противоположных высказываний, но заключается в каком-то третьем утверждении.
§ 22. 3) Если противоположные высказывания оба относятся лишь к одному единственному предмету, то такая противоположность отличается и от контрарной и от противоречащей. В то время, как в случае контрарной противоположности не исключена возможность, что оба контрарные высказывания окажутся в одно и то же время ложными, в случае противоположных высказываний об одном единственном предмете такие высказывания не могут быть оба в одно и то же время ложными» Иными словами, закон исключённого третьего распространяется на эти высказывания так же, как он распространяется ни противоречащие высказывания. Так, два высказывания – «эта звезда – Сириус» и «эта звезда – не Сириус» не могут быть оба одновременно ложными: одно из них непременно должно быть истинным.
Итак, закон исключённого третьего простирается на все противоречащие высказывания, в том числе и на противоположные высказывания об одном единственном предмете напротив, по отношению к контрарным высказываниям закон этот обязательной силы не имеет.
§ 23. Так как закон исключённого третьего справедлив относительно всех противоречащих высказываний, то он так же, как и закон тождества и закон противоречия, может быть выражен общей формулой. Формула закона исключённого третьего: А есть либо В, либо не - В.
Смысл этой формулы следующий. Каков бы ни был предмет нашей мысли (А), предмет этот либо обладает известным свойством (В), либо не обладает им. Невозможно, чтобы ложным было как то, что предмет А обладает свойством В, так и то, что предмет А не обладает этим свойством. Истина непременно в одном из двух противоречащих высказываний. Никакое третье высказывание об отношении А к В и к не-В не может быть истинным.
- Isbn 5-354-00006-8
- Предисловие
- Глава I. Предмет и задача логики Логика как наука о правильном мышлении
- § 4. Так как только определённое мышление есть мышление логичное, то отсюда следует, что всякое мышление, чтобы быть логичным, должно удовлетворять условиям определенности.
- Понятие о логической форме
- Глава II. Логические законы мышления Логические законы как законы определённого, последовательного и доказательного мышления
- Закон тождества
- Закон противоречия
- § 14. Всякое нарушение закона противоречия ведёт к тому, что между нашими высказываниями возникают неувязки, нарушается необходимая логическая связь.
- § 15. Закон противоречия в разъяснённом выше его смысле справедлив относительно всех противоположных друг другу высказываний, независимо от вида самой противоположности.
- Закон достаточного основания
- § 26. Так же, как и рассмотренные уже логические законы мышления, закон достаточного основания может быть выражен общей формулой, а именно: «если есть в, то есть как его основание – а».
- Глава III. Учение о понятии Связь понятия с суждением
- § 6. В каждой мысли необходимо отличать логический состав мысли от его грамматического выражения.
- § 7. Так как речь служит нам для выражения наших мыслей и развилась из потребности выражения мысли, то, вообще говоря, строение предложения и строение суждения соответствуют друг другу.
- Признаки предмета и признаки понятия
- § 10. В каждом суждении наша мысль может выделить понятия, при помощи которых мыслятся субъект, предикат и отношение.
- Существенные признаки
- Содержание и объём понятия
- Классы понятий и отношение между понятиями
- § 18. С точки зрения реального существования предметов понятий все понятия делятся на: 1) конкретные и 2) абстрактные, или отвлечённые.
- § 19. С точки зрения количества предметов, мыслимых посредством понятий, все понятия делятся на 1) общие, 2) единичные и 3) собирательные.
- § 25. И класс совместимых понятий и класс понятий несовместимых в свою очередь заключают в себе каждый дальнейшие подразделения.
- § 28. Родовое понятие, будучи более широким, чем видовое, по объёму, заключает в своём содержании, меньшее сравнительно с видовым понятием количество признаков.
- Глава IV. Логические действия над понятиями Представление и понятие
- Определение понятия
- Генетическое определение
- Ограничение понятия
- Обобщение понятия
- Разделение понятия
- § 19. Из всех возможных ошибок деления самой значительной является ошибка, состоящая в отступлении от принятого при делении основания.
- Дихотомия
- § 21. Существует приём деления, свободный от ошибок, встречающихся при других способах деления. Называется этот приём «дихотомией», т. Е. Делением надвое.
- Глава V. Суждение и его состав. Виды суждений Состав суждения. Субъект и предикат
- § 1. В логическом мышлении понятие обычно встречается не само по себе, но в составе суждения в связи с другими понятиями, входящими в суждение.
- § 2. В главе о понятии мы уже познакомились с членами суждения – с «субъектом» и «предикатом». Рассмотрим подробнее их логическую функцию в суждении и возможные виды отношений между ними.
- § 3. Хотя субъект суждения всегда есть мысль о каком-то предмете, но субъект суждения и самый предмет суждения не одно и то же.
- Основные логические типы суждений
- Суждение как форма выражения истины
- § 10. Высказывание может иметь в мышлении самое различное назначение. Высказывание может выражать чувство («я люблю музыку Бородина»), желание («я хочу написать письмо отцу») и т. Д.
- Качество суждения
- § 19. Кроме общих и частных суждений с точки зрения количества различаются также ещё единичные суждения.
- § 22. Но и независимо от возможности перехода частного суждения в общее всяким общим суждением предполагаются суждения частные и единичные. И это справедливо даже относительно суждений математики.
- Модальность суждений
- Глава VI. Субъект и предикат суждения. Распределенность терминов Отношение между субъектом и предикатом суждения
- Отношение между объемами субъекта и предиката в суждениях о принадлежности предмета классу предметов
- Распределённость субъекта и предиката в суждении
- § 16. Из рассмотренного примера видно, что в одном и том же суждении один термин может оказаться распределённым, другой – нераспределённым.
- Распределённость субъекта и предиката в суждениях о принадлежности предмета классу предметов
- § 24. В частноотрицательных суждениях (о) о принадлежности предмета классу предметов субъект не распределён, но предикат распределён.
- Глава VII. Установление точного логического смысла суждений. Преобразования формы суждений Установление точного логического смысла суждений
- Обращение
- § 13. На чём основывается логическая операция обращения? Что даёт нам право поменять местами предикат и субъект суждения?
- Превращение
- § 21. Второй вид преобразования формы суждений, не изменяющего содержания суждений, составляет превращение.
- Глава VIII. Сопоставление суждений Виды сопоставляемых суждений
- Противопоставление суждений по противоположности
- § 4. При противопоставлении противоположных суждений возможны следующие три случая:
- Противоречащие суждения
- § 5. Отношения противоречащей противоположности определяются следующими правилами:
- Контрарные суждения
- § 6. Контрарные суждения не могут быть оба вместе истинными. Правило это, общее для обоих видов противоположных суждений, основывается на законе противоречия.
- Подконтрарные суждения
- Сопоставление суждений по подчинению
- «Логический квадрат»
- § 12. Расположив знаки качества и количества суждений по вершинам квадрата, легко замечаем, что боковые стороны квадрата ai и ео наглядно представляют отношения подчинения.
- Глава IX. Умозаключения Определение умозаключения
- Деление умозаключений на силлогистические и несиллогистические
- § 7. В практике логического мышления встречаются различные виды умозаключений. Чтобы распределить умозаключения по видам, необходимо исходить из анализа посылок, т.Е. Суждений.
- Простой категорический силлогизм
- Все лягушки - амфибии. S – m
- § 11. Рассмотрим теперь другой пример силлогизма:
- § 12. Рассмотрим третий пример силлогизма:
- § 13. Чтобы выяснить роль каждой фигуры, т. Е. Характер выводов, которые могут быть получены посредством этой фигуры, необходимо познакомиться с разновидностями фигур, или модусами.
- Правила распределённости терминов в посылках и выводах силлогизма
- § 17. Третье общее правило формулируется так: чтобы вывод был возможен, средний термин (м ) должен быть распределен по крайней мере в одной из посылок.
- Правила, определяющие связь между качеством и количеством посылок и выводов силлогизма
- § 20. Шестое общее правило формулируется так: если вывод из данных посылок вообще возможен и если одна из посылок при этом отрицательная, то вывод также будет отрицательный.
- § 25. Из сказанного видно, что различные по качеству и количеству силлогистические выводы требуют различных условий распределённости терминов в посылках.
- Первая фигура и её особые правила
- Вторая фигура и её особые правила
- § 33. Перейдём к рассмотрению второй фигуры простого категорического силлогизма:
- Логический ход умозаключения в силлогизмах первой и второй фигур
- § 38. Логический ход умозаключения в силлогизмах второй фигуры существенно отличается от хода умозаключений в силлогизмах первой фигуры.
- Третья фигура и её особые правила
- § 39. Третья фигура простого категорического силлогизма:
- Логический ход умозаключения по третьей фигуре
- Четвёртая фигура и её особые правила
- Сведение всех фигур простого категорического силлогизма в первой фигуре
- § 45. Существует более сложный способ сведения. Способ этот применяется при сведении некоторых выводов, по второй и по третьей фигуре к выводу по первой.
- Все планеты обращаются вокруг солнца, м – р
- Аксиома силлогизма и две еe формулы
- Условия истинности силлогистических выводов
- Логические ошибки, встречающиеся в силлогизмах
- § 52. Некоторые из логических ошибок неправильного вывода, особенно часто встречающиеся в практике мышления, заслуживают быть особо отмеченными.
- § 53. Вторая встречающаяся в практике силлогистических выводов ошибка состоит в том, что делают вывод по второй фигуре из двух утвердительных посылок.
- Глава X. Виды силлогизмов Условный силлогизм
- § 1. Кроме простых категорических силлогизмов существуют ещё условные и разделительные силлогизмы.
- § 2. В условном силлогизме по крайней мере одна из посылок – условная. Что касается другой посылки, то она может быть либо условной, либо категорической.
- § 6. Условно-категорический силлогизм в свою очередь имеет две разновидности, иди два модуса.
- § 7. Второй модус условно-категорического силлогизма представляет иной ход мысли.
- Ошибки, возможные в условно-категорическом силлогизме
- § 9. Другой вид логической ошибки, возможной в условно-категорическом силлогизме, возникает в случае, когда пытаются заключать от истинности следствия к истинности основания.
- § 10. В некоторых случаях может сложиться впечатление, будто правильный вывод от истинности следствия к истинности основания всё же возможен.
- Простой разделительный силлогизм
- Дилемма
- Разделительно-категорический силлогизм
- § 16. Другой модус разделительно-категорического силлогизма противоположен предыдущему. Вот его пример:
- Ошибки, возможные в разделительно-категорическом силлогизме
- § 17. Модус tollendo ponens и модус ponendo tollens – два единственных модуса разделительно-категорического силлогизма, по которым может быть получен правильный вывод.
- Сокращённые силлогизмы
- Эпихейрема
- Сложные силлогизмы
- § 24. Сорит применяется в случаях, когда необходимо последовательно обозреть длинную цепь звеньев подчинения.
- Глава XI. Несиллогистические умозаключения. Индукция и её виды Несиллогистические умозаключения
- Несиллогистические индуктивные умозаключения
- § 6. Первая и наиболее резко бросающаяся в глаза черта, отличающая индуктивные умозаключения от силлогизмов, состоит в том, что посредством индукции из частных посылок могут получаться общие выводы.
- § 8. Напротив, в индуктивных умозаключениях даже из достоверных посылок далеко не всегда могут быть получены достоверные выводы.
- Полная индукция
- Неполная индукция
- Неполная индукция через простое перечисление
- Неполная индукция через отбор, исключающий случайности обобщения
- § 21. В индуктивных выводах этого рода обобщение, так же как и в случае неполной индукции через простое перечисление, делается на основе только некоторой части фактов известного рода.
- Неполная индукция Бэкона
- Пять основных видов или методов бэконовской индукции
- 1. Метод сходства
- § 30. Так как одно и то же действие может, вообще говоря, вызываться различными причинами, то метод сходства даёт не окончательно достоверное, но лишь вероятное заключение о причине явления.
- 2. Метод различия
- 3. Соединённый метод сходства и различия
- § 38. Мы рассмотрели метод сходства и метод различия каждый в отдельности. Но при исследовании причинной связи явлений эти методы иногда применяются вместе.
- § 39. Схема соединённого метода сходства и различия
- 4. Метод остатков
- 5. Метод сопутствующих изменений
- § 46. Напротив, между выводом по методу остатков и выводом по методу сопутствующих изменений имеется важное различие.
- Логические ошибки, возможные в индуктивных выводах
- § 48. При использовании всех рассмотренных индуктивных методов возможны, как и во всех действиях мышления, логические ошибки.
- Глава XII. Индукция и дедукция Логическое основание и логическая формула выводов о вероятности
- § 1. Рассмотренные в предыдущей главе формы индуктивных умозаключений в некоторых отношениях образуют группы выводов, отличных от силлогистических выводов.
- § 5. Так обстоит дело, если сравнивать дедуктивные и индуктивные выводы с точки зрения логического процесса, или логического обоснования вывода.
- § 8. Наконец, и в третьем отношении – в отношении цели или задачи умозаключения – противоположность между индукцией и дедукцией также не может быть признана безусловной.
- Оценка вероятности индуктивных умозаключений
- § 15. Из сравнения индуктивных выводов с дедуктивными было выведено, что, кроме полной индукции, дающей достоверные заключения, все остальные виды индукции дают заключения вероятные.
- Глава XIII. Гипотетические умозаключения, или гипотезы. Умозаключения по аналогии Построение гипотез и их превращение в достоверную истину
- § 5. В отличие от всех этих форм вывода гипотетический вывод, так же как и вывод по второй фигуре простого категорического силлогизма, исходит из сравнения не субъектов, а предикатов посылок.
- § 6. Но можем ли мы считать достоверным, что предположенная нами причина действительно есть основание для субъекта всех этих предикатов?
- § 12. Второй случай превращения гипотезы в достоверную истину , есть случай, когда положение, составляющее содержание гипотезы, выводится как следствие из достоверных посылок.
- Главнейшие логические типы гипотез
- Аналогия
- § 26. Почему же в одних случаях аналогия оказывается истинной, а в других – ложной?
- Глава XIV. Доказательство и его строение. Виды доказательств Доказательство
- § 5. Этим различием между выводом и доказательством определяется строение доказательства.
- Главнейшие виды доказательств
- Доказательства по существу
- Генетические доказательства
- § 20. Мы уже знаем, что вторую группу доказательств после доказательств по существу составляют так называемые генетические доказательства, или доказательства по источнику происхождения.
- § 21. Генетические доказательства, как всякие доказательства, представляют либо установление истинности тезиса (его оправдание), либо обнаружение его ложности (его опровержение).
- Роль практики и опыта в доказательствах
- § 27. Это различие между науками математическими и науками эмпирическими, т. Е. Доказывающими свои положения на основе прямого обращения к опыту, порождает различив в видах доказательства.
- Опровержение
- Основания как части доказательств
- § 33. Все исходные основания являются либо определениями основных понятий данной науки, либо её аксиомами.
- § 35. В отличие от определения, которое только устанавливает содержание понятия, аксиома есть утверждение, которое рассматривается в данной науке как заведомо истинное, хотя оно нигде не доказывается.
- § 37. Но аксиомы даже не являются положениями безусловно очевидными.
- Ошибки относительно доказываемого тезиса
- Ошибки в основаниях доказательства
- § 45. Ошибки второго вида, возможные в доказательствах, вытекают из ошибок в основаниях. Есть три главные разновидности этих ошибок.
- § 50. Мы рассмотрели группу ошибок заведомо ложного основания и группу ошибок сомнительного (недоказанного) основания с их главными разновидностями.
- Ошибки в аргументации, посредством которой доказывается тезис
- § 55. Другим источником ошибки утверждения терминов являются синонимы. Так называются различные словесные выражения одной и той же мысли.
- И, наконец, почему мы видим, что многие вещи
- Содержание
- Глава X. Виды силлогизмов 121
- Глава XI. Несиллогистические умозаключения. Индукция и её виды 138
- Глава XII. Индукция и дедукция 169
- Глава XIII. Гипотетические умозаключения, или гипотезы. Умозаключения по аналогии 182
- Глава XIV. Доказательство и его строение. Виды доказательств 197