§ 20. Шестое общее правило формулируется так: если вывод из данных посылок вообще возможен и если одна из посылок при этом отрицательная, то вывод также будет отрицательный.
Рассмотрим силлогизм:
Ни один злак не есть споровое растение.
Пшеница – злак.
Пшеница не есть споровое растение.
Здесь одна из посылок – отрицательная, а другая – утвердительная. Это значит, что объём одного из терминов, входящих в вывод, стоит вне объёма среднего термина, а объём другого термина, входящего в вывод, составляет часть объёма среднего термина (см. рис. 52).
Рис. 52
На рисунке изображены отношения понятий, выражаемые посылками. Объём понятия «злаки» изображён кругом М, объём понятия «пшеница» – кругом S, объём понятия «споровые растения» – кругом Р. Из рисунка видно, что так как весь объём М находится вне объёма Р (бо;´льшая посылка), то и объём S, входящий целиком как часть в объём М (меньшая посылка), находится весь вне объёма Р (вывод).
§ 21. Седьмое общее правило силлогизма формулируется так: из двух утвердительных посылок никогда нельзя получить отрицательного вывода. И действительно, отрицательный вывод получается при таком отношении между субъектом и предикатом вывода, когда весь объём предиката (Р) находится вне всего объёма субъекта (S) или по крайней мере вне какой-то части объёма субъекта. Для этого в свою очередь необходимо, чтобы весь объём Р оказался находящимся вне всего объёма среднего термина (М). Тогда, даже при условии, что объём S окажется принадлежащим в какой-то своей части к объёму М, весь объём Р будет находиться вне если не всего объема S, то по крайней мере вне какой-то части объёма S, т. е. вывод будет отрицательный (см. рис. 53).
На рисунке изображены отношения между понятиями силлогизма, обеспечивающие отрицательный вывод. Из рисунка видно, что объём Р во всяком случае должен быть весь вне всего объёма М. Что касается отношения объёма S к объёму М, то вывод может получиться отрицательным и в том случае, когда S входит в М только в известной части своего объёма (1), и – тем более – в случае, когда S входит в М всем своим объёмом (2). В первом случае вывод может получиться частноотрицательный, во втором – вывод всегда будет общеотрицательный.
Итак, объём Р должен быть весь вне всего объёма М, для того чтобы вывод мог получиться отрицательный. Но это значит, что одна из посылок силлогизма (бо;´льшая) должна быть отрицательной.
Напротив, в случае, если обе посылки утвердительные, предикат вывода (Р) никак не может оказаться в таком отношении к субъекту вывода (S), при котором весь объём Р мог бы находиться вне всего или хотя бы вне какой-то части объёма S (см. рис. 54).
Рис. 54
На рисунке изображены отношения между S и Р в случае, когда обе посылки утвердительные. Из рисунка видно, что в этом случае вывод возможен только утвердительный: общеутвердительный (1) и частноутвердительный (2).
Итак, отрицательный вывод никогда не может быть получен из двух утвердительных посылок.
§ 22. Восьмое общее правило силлогизма формулируется так: из двух частных посылок ни по какой фигуре силлогизма нельзя получить правильного вывода. И действительно, если обе посылки частноутвердительные (I, I), то это значит, что в них не распределён ни один термин. Так, в посылках «некоторые птицы зерноядны» и «некоторые водные животные – птицы» ни один термин не распределён. Термины субъекта не распределены как субъекты в частных суждениях, термины предиката не распределены как предикаты утвердительных суждений, выражающих подчинение понятий. Так как средний термин должен быть распределён по крайней мере в одной из посылок в так как при двух частных посылках условие это не может быть выполнено, то вывод из двух частных посылок невозможен (см. рис. 55).
Рис. 55
На рисунке представлены отношения понятий в двух частноутвердительных посылках. Посылки удостоверяют, что объём S известной частью входит в объём М, а объём М входит известной частью в объём Р. Но так как из посылок не видно, какой именно частью своего объёма входит S в М и какой – М в Р, то остаются открытыми две возможности: 1) объём S входит в объём М и объём М – в объём Р таким образом, что ни одна часть объёма S не оказывается принадлежащей объёму Р; 2) объёмы S, М и Р так относятся между собой, что некоторая часть объёма S оказывается принадлежащей объёму Р. В первом случае вывод будет отрицательный, во втором – частноутвердительный. Так как из посылок не видно, какая именно из обеих возможностей должна иметь место в каждом отдельном случае, то вывод из двух частноутвердительных посылок невозможен.
Но вывод невозможен и в случае, если одна из двух частных посылок утвердительная, а другая – отрицательная (I, О). Рассмотрим посылки «некоторые птицы – животные, вьющие гнёзда» и «некоторые животные, вьющие гнёзда, – не хищники». В таких посылках один термин, а именно предикат, отрицательной посылки распределён. Но мы знаем, что если одна из посылок отрицательная, то и вывод может получиться только отрицательный. Допустим, что вывод будет частноотрицательный. В таком случае в посылках силлогизма должны быть распределены по крайней мере два термина: средний, как во всяком силлогизме, и больший, так как, будучи предикатом отрицательного вывода, больший термин распределён в выводе, а потому должен быть распределён и в посылке. Но так как в наших посылках распределён только один термин, то вывод невозможен.
§ 23. Девятое общее правило формулируется так: если одна из посылок частная и если вывод вообще возможен, то он может быть только частным. Если обе посылки утвердительные и одна из них общая, а другая частная (А, I), то один термин – субъект общеутвердительной посылки – будет распределён. Но чтобы вывод получился общий, необходимо, чтобы в посылках были распределены два термина: средний, как во всех силлогизмах, и меньший, так как меньший термин не может быть распределён в выводе, если он не распределён в посылке. Но так как в нашем случае в посылках распределён всего лишь один термин, то вывод возможен только частный. Так, из посылок «все рыбы – позвоночные животные» и «некоторые водные животные – рыбы» можно получить только частный вывод: «некоторые водные животные суть позвоночные животные».
Если же из двух посылок одна утвердительная, а другая отрицательная, причём одна из них частная (IE, El, OA, АО), то в посылках будут распределены два термина: субъект общего суждения и предикат отрицательного. Однако и в этом случае вывод не может быть общим. И действительно, при одной отрицательной посылке вывод может получиться только отрицательный. Так как наши посылки –IE, El, OA, АО, то вывод из них может быть лишь отрицательный. Таким образом, наш общий вывод, в случае если бы он был возможен, должен был бы быть отрицательным. Но так как в общеотрицательном выводе распределены и субъект и предикат (субъект как субъект общего, предикат как предикат отрицательного суждения), то они должны быть распределены и в посылках. Кроме того, в одной из посылок должен быть распределён также и средний термин. Итак, для того чтобы вывод из наших посылок мог оказаться общим, в посылках должны быть распределены целых три термина. А так как в наших посылках распределены только два термина, то общий вывод из них невозможен.
§ 24. Десятое правило, общее для всех фигур силлогизма, формулируется так: если бо;´льшая посылка – частная, а меньшая – отрицательная, то вывод невозможен. Рассмотрим, например, посылки: «некоторые гвардейцы – орденоносцы», «ни один боец Н - ской части – не гвардеец». Согласно большей посылке отношение между средним термином М («гвардейцы») и большим термином Р («орденоносцы») таково, что часть объёма М входит в объём Р (см. рис. 56).
Рис. 56
Согласно меньшей посылке отношение между меньшим термином S («бойцы Н - ской части») и средним термином М («гвардейцы») таково, что весь объём S целиком находится вне всего объёма М (см. рис. 57).
Рис. 57
Сопоставим теперь обе посылки и посмотрим, что можно вывести из них об отношении «бойцов Н-ской части» к «орденоносцам» (S к Р). То, что известно из посылок об отношениях между терминами М, Р и S, оставляет открытыми три возможных отношения между S и Р (см. рис. 58).
Рис. 58
Первая из них состоит в том, что, будучи целиком вне объёма М, объём S весь входит в объём Р. В этом случае, не будучи гвардейцами, все бойцы Н - ской части могут быть орденоносцами. Вторая состоит в том, что, будучи целиком вне объёма М, объём S известной своей частью входит в объём Р. В этом случае, не будучи гвардейцами, некоторые бойцы Н - ской части могут быть орденоносцами. Наконец, третья возможность состоит в том, что, будучи целиком вне объёма М, весь объём S находится также и вне всего объёма Р. В этом случае, не принадлежа к гвардейцам, ни один боец Н-ской части не принадлежит в то же время и к орденоносцам. Так как из посылок не видно, какая именно из этих трёх возможностей должна иметь место, то при указанных условиях (когда большая посылка –частная, а меньшая – утвердительная) вывод невозможен.
- Isbn 5-354-00006-8
- Предисловие
- Глава I. Предмет и задача логики Логика как наука о правильном мышлении
- § 4. Так как только определённое мышление есть мышление логичное, то отсюда следует, что всякое мышление, чтобы быть логичным, должно удовлетворять условиям определенности.
- Понятие о логической форме
- Глава II. Логические законы мышления Логические законы как законы определённого, последовательного и доказательного мышления
- Закон тождества
- Закон противоречия
- § 14. Всякое нарушение закона противоречия ведёт к тому, что между нашими высказываниями возникают неувязки, нарушается необходимая логическая связь.
- § 15. Закон противоречия в разъяснённом выше его смысле справедлив относительно всех противоположных друг другу высказываний, независимо от вида самой противоположности.
- Закон достаточного основания
- § 26. Так же, как и рассмотренные уже логические законы мышления, закон достаточного основания может быть выражен общей формулой, а именно: «если есть в, то есть как его основание – а».
- Глава III. Учение о понятии Связь понятия с суждением
- § 6. В каждой мысли необходимо отличать логический состав мысли от его грамматического выражения.
- § 7. Так как речь служит нам для выражения наших мыслей и развилась из потребности выражения мысли, то, вообще говоря, строение предложения и строение суждения соответствуют друг другу.
- Признаки предмета и признаки понятия
- § 10. В каждом суждении наша мысль может выделить понятия, при помощи которых мыслятся субъект, предикат и отношение.
- Существенные признаки
- Содержание и объём понятия
- Классы понятий и отношение между понятиями
- § 18. С точки зрения реального существования предметов понятий все понятия делятся на: 1) конкретные и 2) абстрактные, или отвлечённые.
- § 19. С точки зрения количества предметов, мыслимых посредством понятий, все понятия делятся на 1) общие, 2) единичные и 3) собирательные.
- § 25. И класс совместимых понятий и класс понятий несовместимых в свою очередь заключают в себе каждый дальнейшие подразделения.
- § 28. Родовое понятие, будучи более широким, чем видовое, по объёму, заключает в своём содержании, меньшее сравнительно с видовым понятием количество признаков.
- Глава IV. Логические действия над понятиями Представление и понятие
- Определение понятия
- Генетическое определение
- Ограничение понятия
- Обобщение понятия
- Разделение понятия
- § 19. Из всех возможных ошибок деления самой значительной является ошибка, состоящая в отступлении от принятого при делении основания.
- Дихотомия
- § 21. Существует приём деления, свободный от ошибок, встречающихся при других способах деления. Называется этот приём «дихотомией», т. Е. Делением надвое.
- Глава V. Суждение и его состав. Виды суждений Состав суждения. Субъект и предикат
- § 1. В логическом мышлении понятие обычно встречается не само по себе, но в составе суждения в связи с другими понятиями, входящими в суждение.
- § 2. В главе о понятии мы уже познакомились с членами суждения – с «субъектом» и «предикатом». Рассмотрим подробнее их логическую функцию в суждении и возможные виды отношений между ними.
- § 3. Хотя субъект суждения всегда есть мысль о каком-то предмете, но субъект суждения и самый предмет суждения не одно и то же.
- Основные логические типы суждений
- Суждение как форма выражения истины
- § 10. Высказывание может иметь в мышлении самое различное назначение. Высказывание может выражать чувство («я люблю музыку Бородина»), желание («я хочу написать письмо отцу») и т. Д.
- Качество суждения
- § 19. Кроме общих и частных суждений с точки зрения количества различаются также ещё единичные суждения.
- § 22. Но и независимо от возможности перехода частного суждения в общее всяким общим суждением предполагаются суждения частные и единичные. И это справедливо даже относительно суждений математики.
- Модальность суждений
- Глава VI. Субъект и предикат суждения. Распределенность терминов Отношение между субъектом и предикатом суждения
- Отношение между объемами субъекта и предиката в суждениях о принадлежности предмета классу предметов
- Распределённость субъекта и предиката в суждении
- § 16. Из рассмотренного примера видно, что в одном и том же суждении один термин может оказаться распределённым, другой – нераспределённым.
- Распределённость субъекта и предиката в суждениях о принадлежности предмета классу предметов
- § 24. В частноотрицательных суждениях (о) о принадлежности предмета классу предметов субъект не распределён, но предикат распределён.
- Глава VII. Установление точного логического смысла суждений. Преобразования формы суждений Установление точного логического смысла суждений
- Обращение
- § 13. На чём основывается логическая операция обращения? Что даёт нам право поменять местами предикат и субъект суждения?
- Превращение
- § 21. Второй вид преобразования формы суждений, не изменяющего содержания суждений, составляет превращение.
- Глава VIII. Сопоставление суждений Виды сопоставляемых суждений
- Противопоставление суждений по противоположности
- § 4. При противопоставлении противоположных суждений возможны следующие три случая:
- Противоречащие суждения
- § 5. Отношения противоречащей противоположности определяются следующими правилами:
- Контрарные суждения
- § 6. Контрарные суждения не могут быть оба вместе истинными. Правило это, общее для обоих видов противоположных суждений, основывается на законе противоречия.
- Подконтрарные суждения
- Сопоставление суждений по подчинению
- «Логический квадрат»
- § 12. Расположив знаки качества и количества суждений по вершинам квадрата, легко замечаем, что боковые стороны квадрата ai и ео наглядно представляют отношения подчинения.
- Глава IX. Умозаключения Определение умозаключения
- Деление умозаключений на силлогистические и несиллогистические
- § 7. В практике логического мышления встречаются различные виды умозаключений. Чтобы распределить умозаключения по видам, необходимо исходить из анализа посылок, т.Е. Суждений.
- Простой категорический силлогизм
- Все лягушки - амфибии. S – m
- § 11. Рассмотрим теперь другой пример силлогизма:
- § 12. Рассмотрим третий пример силлогизма:
- § 13. Чтобы выяснить роль каждой фигуры, т. Е. Характер выводов, которые могут быть получены посредством этой фигуры, необходимо познакомиться с разновидностями фигур, или модусами.
- Правила распределённости терминов в посылках и выводах силлогизма
- § 17. Третье общее правило формулируется так: чтобы вывод был возможен, средний термин (м ) должен быть распределен по крайней мере в одной из посылок.
- Правила, определяющие связь между качеством и количеством посылок и выводов силлогизма
- § 20. Шестое общее правило формулируется так: если вывод из данных посылок вообще возможен и если одна из посылок при этом отрицательная, то вывод также будет отрицательный.
- § 25. Из сказанного видно, что различные по качеству и количеству силлогистические выводы требуют различных условий распределённости терминов в посылках.
- Первая фигура и её особые правила
- Вторая фигура и её особые правила
- § 33. Перейдём к рассмотрению второй фигуры простого категорического силлогизма:
- Логический ход умозаключения в силлогизмах первой и второй фигур
- § 38. Логический ход умозаключения в силлогизмах второй фигуры существенно отличается от хода умозаключений в силлогизмах первой фигуры.
- Третья фигура и её особые правила
- § 39. Третья фигура простого категорического силлогизма:
- Логический ход умозаключения по третьей фигуре
- Четвёртая фигура и её особые правила
- Сведение всех фигур простого категорического силлогизма в первой фигуре
- § 45. Существует более сложный способ сведения. Способ этот применяется при сведении некоторых выводов, по второй и по третьей фигуре к выводу по первой.
- Все планеты обращаются вокруг солнца, м – р
- Аксиома силлогизма и две еe формулы
- Условия истинности силлогистических выводов
- Логические ошибки, встречающиеся в силлогизмах
- § 52. Некоторые из логических ошибок неправильного вывода, особенно часто встречающиеся в практике мышления, заслуживают быть особо отмеченными.
- § 53. Вторая встречающаяся в практике силлогистических выводов ошибка состоит в том, что делают вывод по второй фигуре из двух утвердительных посылок.
- Глава X. Виды силлогизмов Условный силлогизм
- § 1. Кроме простых категорических силлогизмов существуют ещё условные и разделительные силлогизмы.
- § 2. В условном силлогизме по крайней мере одна из посылок – условная. Что касается другой посылки, то она может быть либо условной, либо категорической.
- § 6. Условно-категорический силлогизм в свою очередь имеет две разновидности, иди два модуса.
- § 7. Второй модус условно-категорического силлогизма представляет иной ход мысли.
- Ошибки, возможные в условно-категорическом силлогизме
- § 9. Другой вид логической ошибки, возможной в условно-категорическом силлогизме, возникает в случае, когда пытаются заключать от истинности следствия к истинности основания.
- § 10. В некоторых случаях может сложиться впечатление, будто правильный вывод от истинности следствия к истинности основания всё же возможен.
- Простой разделительный силлогизм
- Дилемма
- Разделительно-категорический силлогизм
- § 16. Другой модус разделительно-категорического силлогизма противоположен предыдущему. Вот его пример:
- Ошибки, возможные в разделительно-категорическом силлогизме
- § 17. Модус tollendo ponens и модус ponendo tollens – два единственных модуса разделительно-категорического силлогизма, по которым может быть получен правильный вывод.
- Сокращённые силлогизмы
- Эпихейрема
- Сложные силлогизмы
- § 24. Сорит применяется в случаях, когда необходимо последовательно обозреть длинную цепь звеньев подчинения.
- Глава XI. Несиллогистические умозаключения. Индукция и её виды Несиллогистические умозаключения
- Несиллогистические индуктивные умозаключения
- § 6. Первая и наиболее резко бросающаяся в глаза черта, отличающая индуктивные умозаключения от силлогизмов, состоит в том, что посредством индукции из частных посылок могут получаться общие выводы.
- § 8. Напротив, в индуктивных умозаключениях даже из достоверных посылок далеко не всегда могут быть получены достоверные выводы.
- Полная индукция
- Неполная индукция
- Неполная индукция через простое перечисление
- Неполная индукция через отбор, исключающий случайности обобщения
- § 21. В индуктивных выводах этого рода обобщение, так же как и в случае неполной индукции через простое перечисление, делается на основе только некоторой части фактов известного рода.
- Неполная индукция Бэкона
- Пять основных видов или методов бэконовской индукции
- 1. Метод сходства
- § 30. Так как одно и то же действие может, вообще говоря, вызываться различными причинами, то метод сходства даёт не окончательно достоверное, но лишь вероятное заключение о причине явления.
- 2. Метод различия
- 3. Соединённый метод сходства и различия
- § 38. Мы рассмотрели метод сходства и метод различия каждый в отдельности. Но при исследовании причинной связи явлений эти методы иногда применяются вместе.
- § 39. Схема соединённого метода сходства и различия
- 4. Метод остатков
- 5. Метод сопутствующих изменений
- § 46. Напротив, между выводом по методу остатков и выводом по методу сопутствующих изменений имеется важное различие.
- Логические ошибки, возможные в индуктивных выводах
- § 48. При использовании всех рассмотренных индуктивных методов возможны, как и во всех действиях мышления, логические ошибки.
- Глава XII. Индукция и дедукция Логическое основание и логическая формула выводов о вероятности
- § 1. Рассмотренные в предыдущей главе формы индуктивных умозаключений в некоторых отношениях образуют группы выводов, отличных от силлогистических выводов.
- § 5. Так обстоит дело, если сравнивать дедуктивные и индуктивные выводы с точки зрения логического процесса, или логического обоснования вывода.
- § 8. Наконец, и в третьем отношении – в отношении цели или задачи умозаключения – противоположность между индукцией и дедукцией также не может быть признана безусловной.
- Оценка вероятности индуктивных умозаключений
- § 15. Из сравнения индуктивных выводов с дедуктивными было выведено, что, кроме полной индукции, дающей достоверные заключения, все остальные виды индукции дают заключения вероятные.
- Глава XIII. Гипотетические умозаключения, или гипотезы. Умозаключения по аналогии Построение гипотез и их превращение в достоверную истину
- § 5. В отличие от всех этих форм вывода гипотетический вывод, так же как и вывод по второй фигуре простого категорического силлогизма, исходит из сравнения не субъектов, а предикатов посылок.
- § 6. Но можем ли мы считать достоверным, что предположенная нами причина действительно есть основание для субъекта всех этих предикатов?
- § 12. Второй случай превращения гипотезы в достоверную истину , есть случай, когда положение, составляющее содержание гипотезы, выводится как следствие из достоверных посылок.
- Главнейшие логические типы гипотез
- Аналогия
- § 26. Почему же в одних случаях аналогия оказывается истинной, а в других – ложной?
- Глава XIV. Доказательство и его строение. Виды доказательств Доказательство
- § 5. Этим различием между выводом и доказательством определяется строение доказательства.
- Главнейшие виды доказательств
- Доказательства по существу
- Генетические доказательства
- § 20. Мы уже знаем, что вторую группу доказательств после доказательств по существу составляют так называемые генетические доказательства, или доказательства по источнику происхождения.
- § 21. Генетические доказательства, как всякие доказательства, представляют либо установление истинности тезиса (его оправдание), либо обнаружение его ложности (его опровержение).
- Роль практики и опыта в доказательствах
- § 27. Это различие между науками математическими и науками эмпирическими, т. Е. Доказывающими свои положения на основе прямого обращения к опыту, порождает различив в видах доказательства.
- Опровержение
- Основания как части доказательств
- § 33. Все исходные основания являются либо определениями основных понятий данной науки, либо её аксиомами.
- § 35. В отличие от определения, которое только устанавливает содержание понятия, аксиома есть утверждение, которое рассматривается в данной науке как заведомо истинное, хотя оно нигде не доказывается.
- § 37. Но аксиомы даже не являются положениями безусловно очевидными.
- Ошибки относительно доказываемого тезиса
- Ошибки в основаниях доказательства
- § 45. Ошибки второго вида, возможные в доказательствах, вытекают из ошибок в основаниях. Есть три главные разновидности этих ошибок.
- § 50. Мы рассмотрели группу ошибок заведомо ложного основания и группу ошибок сомнительного (недоказанного) основания с их главными разновидностями.
- Ошибки в аргументации, посредством которой доказывается тезис
- § 55. Другим источником ошибки утверждения терминов являются синонимы. Так называются различные словесные выражения одной и той же мысли.
- И, наконец, почему мы видим, что многие вещи
- Содержание
- Глава X. Виды силлогизмов 121
- Глава XI. Несиллогистические умозаключения. Индукция и её виды 138
- Глава XII. Индукция и дедукция 169
- Глава XIII. Гипотетические умозаключения, или гипотезы. Умозаключения по аналогии 182
- Глава XIV. Доказательство и его строение. Виды доказательств 197