logo search
1moiseev_v_i_filosofiya_i_metodologiya_nauki / Моисеев В

§ 2. Дедуктивно-номологическая модель научного объяснения

С гипотетико-дедуктивной моделью научной теории тесно связана своя модель научного объяснения, которая называется дедуктивно-номологической моделью, или моделью охватывающего закона, или моделью Гемпеля-Оппенгейма (по имени авторов, впервые ее сформулировавших).

Процитируем здесь слова английского философа Карла Поппера, который писал об этой модели таким образом: «Дать причинное объяснение некоторого события значит дедуцировать его высказывание, используя в качестве посылок один или несколько универсальных законов вместе с определенными сингулярными высказываниями – начальными условиями»21. И, разъясняя это определение, Поппер приводит пример одного события, которое объясняется в физике: «Нить, к которой подвешен груз в 2 кг., разрывается». Для объяснения этого события физик будет использовать такой универсальный закон: «Для всякой нити верно, что если она нагружена больше предела своей прочности, то она разрывается». Теперь, чтобы окончательно объяснить разрыв конкретной нити, нужно применить универсальный закон к этой нити, наложив на закон некоторые конкретизирующие условия, которые называются начальными условиями. В нашем случае это будут, например, условия «Предел прочности данной нити равен 1.5 кг.» и «К данной нити подвешен груз 2 кг.», откуда можно сделать вывод, что «Данная нить нагружена выше предела ее прочности».

Такая модель объяснения предполагает наличие некоторой теории Т с языком L, в рамках которой формулируются универсальные законы и начальные условия. Объясняемое событие S должно быть выражено на языке L в виде некоторой формулы Е. Объяснить S означает теперь вывести формулу Е из некоторых универсальных законов L1,L2, …, Ln и начальных условий C1, C2,…,Cm, которые являются теоремами теории Т. Такая выводимость может быть изображена в следующей форме:

L1,L2, …, Ln

C1, C2,…,Cm

Е

Посылки выводимости (законы L1,L2, …, Ln и начальные условия C1, C2,…,Cm) называют экспланансом (тем, на основе чего проводят объяснение), формулу Е – экспланандумом (тем, что объясняется).