§ 2. Перечислительная (энумеративная) индукция
Выше мы уже рассматривали примеры этого вида индукции. Как отмечалось ранее, в индуктивном выводе мыслитель имеет дело с некоторым классом объектов. Этот класс содержит обычно очень большое число объектов, которые практически невозможно все исследовать. Далее обнаруживается, что некоторое конечное число объектов обладает некоторым свойством Р. На этом основании исследователь может с некоторой вероятностью предполагать, что свойство Р выполняется для всех объектов класса. Получаем следующую общую форму перечислительной индукции:
1-й объект о1 класса К обладает свойством Р
2-й объект о2 класса К обладает свойством Р
…
n-й объект оn класса К обладает свойством Р
Все объекты класса К обладают свойством Р
Утверждения над чертой – посылки индукции, под чертой – индуктивное заключение. Обозначим множество всех объектов {о1, о2,…, оn} через F. Множество F в общем случае является частью всего класса К. Здесь различают два следующих случая:
1) Класс всех объектов К исчерпывается множеством F, т.е. в посылках мы проверили обладание свойством Р для всех объектов класса К. Например, мы утверждаем свойство «быть младше 20 лет» для всех учеников некоторого класса. Если в классе, допустим, 17 человек, то для каждого из них мы можем определить возраст, установив, что он меньше 20 лет, а затем перейти к выводу «Все ученики класса младше 20 лет». Такой вид перечислительной индукции называется полной перечислительной индукцией, поскольку множество F здесь полностью исчерпывает собою исследуемый класс К. Это вид индукции является переходом от частного к общему, но не является вероятностным выводом, т.е. является индукцией-1.
2) Класс всех объектов К не исчерпывается множеством F, например, К может быть бесконечным множеством, в то время как множество F всегда содержит только конечное число элементов. Этот вид индукции называется поэтому неполной перечислительной индукцией. Здесь мы уже совершаем скачок в мышлении, переходя от выполнения свойства Р на части класса К к выполнению этого свойства на целом классе К. Из-за такого скачка возможны ошибки, когда в оставшейся от F части К может найтись объект, который еще не проверен нами на обладание совйства Р и на самом деле таким свойством не обладает. Например, вы стоите на остановке и ждете автобуса № 3. В первый раз подошел автобус № 2 (Автобус № 3 не подошел в момент t1), затем подошел автобус № 7 (Автобус № 3 не подошел в момент t2), затем - № 1А (Автобус № 3 не подошел в момент t3). В отчаянии вы уже готовы сделать индуктивный вывод «Автобус № 3 никогда не подойдет» (здесь в качестве объектов выступают моменты времени), и вдруг радостно замечаете, что из-за поворота наконец показался ваш долгожданный автобус № 3. Поэтому неполная перечислительная индукция – это в общем случае только вероятностный вывод. Но это несомненно обобщение, так что в целом получаем этот вид индукции как индукцию-12. Именно неполная перечислительная индукция представляет из себя наиболее типичный пример индуктивного вывода. Она, в свою очередь, может быть разделена на популярную и научную индукцию.
2.1) популярная неполная перечислительная индукция. Представляет из себя случай неполной перечислительной индукции, когда для обоснования индуктивного вывода не привлекается никаких дополнительных и серьезных аргументов. Обычно этот вид обобщения делается поспешно, под влиянием эмоций и в рамках обыденной жизни человека (подобно выводу «Автобус № 3 никогда не подойдет»), почему и носит название «популярной индукции».
2.1) научная неполная перечислительная индукция. Это, наоборот, случай неполной перечислительной индукции, когда привлекаются те или иные дополнительные средства обоснования индуктивного вывода из арсенала определенной научной теории. Например, биолог, изучая брачное поведение нескольких пар птиц, может обобщить свои наблюдения на все пары данного вида птиц. В этом случае в биологии используется гипотеза об однородности поведения всех особей одного вида, например, на основе анатомического и физиологического сходства этих особей. Здесь обобщение производится уже не столь произвольно, как в популярной индукции, но подкрепляется дополнительными научными средствами.
Оставшиеся виды индукции также представляют из себя случаи неполной перечислительной индукции, использующие те или иные средства своего дополнительного обоснования. В этом смысле они вполне могли бы быть рассмотрены как подвиды научной индукции, но обычно их рассматривают отдельно, в связи с типичностью и самостоятельной выделенностью используемых в них дополнительных методов обоснования индукции.
- Часть 1. Понятие науки
- Глава 1. Феномен науки
- § 1. Удивление как начало научного познания
- § 2. Понятие о структуре
- § 3. Логические теории, описывающие структуры
- § 4. Эмпирическая реализация структуры
- § 5. Понятие о научном логосе
- § 6. Наука как субъект
- § 7. Наука в обществе
- § 8. Наука в истории
- § 9. Система наук
- Глава 2. Основания науки
- § 1. Примеры процедур обоснования
- § 2. Общая структура процедуры обоснования
- § 3. Фундаментализм и антифундаментализм
- § 4. Сетевая модель рациональности
- § 5. Метод последовательных приближений
- Глава 3. Наука и культура
- § 1. Определения культуры
- § 2. Культура как онтология
- § 3. Культура и наука как субъектные онтологии
- § 4. Проблема логоса субъектных онтологий
- Часть 2. Методы и формы научного познания
- § 1.Чувственное и рациональное познание
- Раздел 1. Эмпирические методы научного познания
- § 1. Наблюдение
- § 2. Измерение
- § 3. Эксперимент
- § 4. Теоретическая нагруженность эмпирического познания
- Раздел 2. Теоретические методы научного познания
- Глава 1. Индукция в научном познании
- § 1. Математическая индукция
- § 2. Перечислительная (энумеративная) индукция
- § 3. Элиминативная индукция
- § 4. Индукция как обратная дедукция
- § 5. Аналогия
- § 6. Парадокс лысого
- Глава 2. Дедукция в научном познании
- § 1. Немного об истории дедуктивного познания
- § 2. Искусственные и естественные языки
- § 3. О законах формальной логики
- § 4. Формальные символические языки
- § 5. Синтаксис и семантика
- Глава 3. Аксиоматико-дедуктивный и гипотетико-дедуктивный
- § 1. Аксиоматико-дедуктивный метод научного познания
- § 2. Гипотетико-дедуктивный метод научного познания
- Глава 4. Метод моделирования
- § 1. Модели и пределы
- § 2. Модели и интервал моделируемости
- § 3. О некоторых видах моделей
- Глава 5. Методы научного абстрагирования и идеализации
- § 1. Элиминативная теория абстракции
- § 2. Продуктивная теория абстракции
- Глава 6. Научная теория. Модели научного объяснения
- § 1. Гипотетико-дедуктивная модель научной теории
- § 2. Дедуктивно-номологическая модель научного объяснения
- § 3. Альтернативные модели научного объяснения
- § 4. Альтернативные модели научной теории
- Часть 3. Логико-методологические проблемы
- Глава 1. Методология системного подхода
- § 1. Основные понятия системного подхода
- § 2. Логика целого
- § 3. Виды целых
- § 4. Воплощение целого
- Глава 2. Философия и методология синергетики
- § 1. Феномен синергетики
- § 2. Синергетика и термодинамика
- § 3. Синергетика и теория особенностей
- § 4. Сводка основных понятий синергетики
- § 5. Обобщенный образ синергетической системы
- § 6. Сильная и слабая синергетика
- Глава 3. Методологические принципы
- § 1. Принцип наблюдаемости
- § 2. Принцип дополнительности
- § 3. Принцип соответствия
- § 4. Принцип симметрии
- Глава 4. Принцип детерминизма
- § 1. Дефинитивный детерминизм
- § 2. Жесткий (лапласовский) детерминизм
- § 3. Вероятностный детерминизм
- § 4. Проблема синтеза видов детерминизма
- Часть 4. Модели научного знания
- Глава 1. Логический позитивизм
- § 1. Этап догматического верификационизма
- § 2. Этап вероятностного верификационизма
- Глава 2. Модель науки Карла Поппера
- § 1. Фальсифицируемость как критерий демаркации
- § 2. Конвенционализм в философии Поппера
- § 3. Эволюция научного знания
- Глава 3. Модель науки Имре Лакатоса
- § 1. Доказательства и опровержения
- § 2. Процесс обогащения знания
- § 3. Философия исследовательских программ
- Глава 4. Модель науки Томаса Куна
- Глава 5. Модель науки Пола Фейерабенда
- Глава 6. К итогам развития философии науки
- Часть 5. Научная рациональность и ее типы
- § 1. Понятие рациональности
- § 2. Классическая научная рациональность
- § 3. Неклассическая научная рациональность
- § 4. Витализация образа материи в неклассической рациональности