§ 19. С точки зрения количества предметов, мыслимых посредством понятий, все понятия делятся на 1) общие, 2) единичные и 3) собирательные.
Общими называются понятия, посредством которых мыслится не отдельный предмет, а целый класс однородных предметов, носящих одно и то же наименование. Общими будут, например, понятия: «круг», «человек», «суждение».
Единичными называются понятия, посредством которых мыслится один единственный предмет, например понятия: «Пётр», «Сириус», «Киев».
Собирательными называются понятия, посредством которых мыслится целая группа или совокупность предметов, однако мыслится эта группа в качестве единого предмета. Таковы, например, понятия: «созвездие», «батальон», «роща». Так, созвездие есть не одна звезда, а совокупность звёзд. Однако мыслится эта совокупность как некоторое единство, или целое. Собирательные понятия соединяют в себе свойства общих и единичных понятий. Так же как общие понятия, они охватывают или представляют целый класс предметов. Так же как посредством единичных понятий, посредством собирательных понятий мыслится некоторый единый предмет. Однако мыслимый посредством них единый предмет существует в качестве единого только для мысли. В действительности единство его складывается из множества, причём реально существует – в качестве предмета – именно множество, а не единство.
§ 20. Между предметами одновременно существует и сходство и различие, т. е. в самих предметах имеются как общие им всем, так и различные признаки. Если так обстоит дело с самими предметами, то не иначе должно быть и с понятиями об этих предметах. Поэтому одним из важных вопросов логики является вопрос об отношении между понятиями по их содержанию и по их объёму.
§ 21. По содержанию понятия могут быть либо сравнимыми между собой, либо несравнимыми. Сравнимыми называются понятия, в содержании которых, несмотря на различие известных, иногда весьма многих признаков, имеются также и некоторые общие им и потому допускающие сравнение признаки. Предметы таких понятий принадлежат к известной объединяющей их, хотя иногда чрезвычайно широкой, области. Так, понятия «человек», «животное», «растение», «минерал» суть понятия сравнимые. В содержании всех этих понятий имеются общие признаки, а предметы всех этих понятий составляют весьма обширную, общую всем им область тел.
Напротив, такие понятия, как, например, «дом» и «доблесть»– понятия несравнимые. Предметы этих понятий принадлежат к совершенно различным областям. Поэтому в содержании этих понятий нет общих признаков, кроме тех, которые в силу крайней общности могут считаться принадлежащими едва ли не всем без исключения предметам. Так, и понятие «дом» и понятие «доблесть» оба могут быть объектами мысли, оба являются общими понятиями и т. д.
Впрочем, если учесть, что все понятия, как бы различно ни было их содержание и к каким бы различным областям ни принадлежали их предметы, всё же могут быть объектами нашей мысли, то в этом смысле можно сказать, что все понятия без исключения сравнимы между собой и что безусловно несравнимых понятий вовсе не существует.
§ 22. Сравнимые понятия могут быть по содержанию либо совместимыми между собой, либо несовместимыми или противоположными. Совместимыми называются два таких понятия, в содержании которых нет признаков, исключающих возможность полного или частичного совпадения объёмов этих понятий. Так, понятие «орудие» и понятие «гаубица» имеют различное содержание. Но в то же время в содержании этих двух понятий нет таких признаков, которые были бы несовместимы, т. е. исключали бы возможность совпадения их объёмов. Поэтому, как бы ни различались между собой предметы этих понятий, не исключена возможность, что существуют такие предметы, которые одновременно принадлежат объёму как одного, так и другого понятия. В самом деле: в числе орудий имеются гаубицы, а гаубицы, в свою очередь, входят в число орудий. Другой пример с гласимых понятий–понятие «паразиты» и понятие «растения». При всём различии в содержании этих понятий в них нет признаков, которые исключали бы для растения возможность быть паразитом. И действительно: некоторые растения (например, омела) суть паразиты, и некоторые паразиты суть растения. Иными словами, объёмы совместимых понятий могут, хотя бы в известной своей части, совпадать между собой.
Рис. 1
§ 23. Для большей наглядности отношения между объёмами понятий изображаются в логике посредством кругов. Каждый отдельный предмет, принадлежащий объёму данного понятия, изображается посредством точки, помещённой либо внутри круга, либо на его окружности (см. рис. 1).
Так как в объём понятия входит вся совокупность предметов класса и так как круг (рис. 1) имеет на своей поверхности любое количество точек, то круг, нарисованный для представления объёма понятия, наглядно изображает любое число предметов одного и того же класса. Если объём одного понятия составляет часть объёма другого понятия, иначе говоря, целиком входит в объём другого понятия, то объём первого понятия изображается посредством круга, нарисованного внутри большего круга и целиком помещающегося на его площади.
Рис. 2
Например, отношение между объёмами понятий «орудие» и «гаубица» может быть изображено так, как оно представлено на рис. 2.
Здесь объём понятия «гаубица» изображён посредством меньшего круга В, а объём понятия «орудие» – посредством большего круга А. При этом меньший круг В целиком помещается внутри большего круга А. Рисунок этот показывает, что все гаубицы суть орудия, или, иначе говоря, что все предметы, входящие в объём понятия В, принадлежат вместе с тем и объёму понятия А.
Иногда объёмы двух понятий, А и В, частично совпадают. Это происходит в тех случаях, когда часть предметов, входящих в объём понятия А (но не все предметы, составляющие объём понятия А), входит также и в объём понятия В. Наглядно отношение между объёмами таких понятий изображается посредством двух перекрещивающихся кругов (см. рис. 3).
Рис. 3
Например, уже рассмотренное нами отношение между объёмами понятий «паразиты» и «растения» может быть представлено так, как оно изображено на рис. 3: некоторые (но не все) паразиты суть растения, и некоторые (но не все) растения суть паразиты. При этом заштрихованная и общая обоим кругам часть плоскости рисунка будет обозначать те предметы, которые одновременно принадлежат как объёму понятия А, так и объёму понятия В. Незаштрихованные части обоих кругов будут обозначать те части объёмов обоих понятий, которые не могут совпадать: растения, которые не являются паразитами, и паразитов, которые не являются растениями.
Если ни один предмет, принадлежащий объёму понятия А, не может одновременно принадлежать объёму понятия В, то отношение между объёмами таких двух понятий изображается при помощи двух кругов, помещённых один вне другого так, что ни одна точка, лежащая на площади одного круга, не может оказаться лежащей на площади другого круга (см. рис. 4).
Рис. 4
Например, отношение между объёмами понятий «острый угол» и «тупой угол» может быть представлено так, как оно представлено на рис. 4: сразу видно, что ни один острый угол не может быть тупым углом и, наоборот, ни один тупой угол не может быть острым.
§ 24. В отличие от совместимых понятий, несовместимыми называются два таких понятия, в содержании которых имеются признаки, исключающие возможность не только полного, но и частичного совпадения объёмов обоих понятий. Таковы, например, понятия «больной» и «здоровый». Невозможно найти такой предмет, который одновременно принадлежал бы к объему обоих этих понятий. Иными словами, объёмы таких понятий не могут даже частично совпадать между собой.
Так как объёмы несовместимых понятий не могут совпадать между собой даже частично, то отношение между объёмами таких понятий изображается так, как это представлено на рис. 4, – в виде двух кругов, лежащих один вне другого.
- Isbn 5-354-00006-8
- Предисловие
- Глава I. Предмет и задача логики Логика как наука о правильном мышлении
- § 4. Так как только определённое мышление есть мышление логичное, то отсюда следует, что всякое мышление, чтобы быть логичным, должно удовлетворять условиям определенности.
- Понятие о логической форме
- Глава II. Логические законы мышления Логические законы как законы определённого, последовательного и доказательного мышления
- Закон тождества
- Закон противоречия
- § 14. Всякое нарушение закона противоречия ведёт к тому, что между нашими высказываниями возникают неувязки, нарушается необходимая логическая связь.
- § 15. Закон противоречия в разъяснённом выше его смысле справедлив относительно всех противоположных друг другу высказываний, независимо от вида самой противоположности.
- Закон достаточного основания
- § 26. Так же, как и рассмотренные уже логические законы мышления, закон достаточного основания может быть выражен общей формулой, а именно: «если есть в, то есть как его основание – а».
- Глава III. Учение о понятии Связь понятия с суждением
- § 6. В каждой мысли необходимо отличать логический состав мысли от его грамматического выражения.
- § 7. Так как речь служит нам для выражения наших мыслей и развилась из потребности выражения мысли, то, вообще говоря, строение предложения и строение суждения соответствуют друг другу.
- Признаки предмета и признаки понятия
- § 10. В каждом суждении наша мысль может выделить понятия, при помощи которых мыслятся субъект, предикат и отношение.
- Существенные признаки
- Содержание и объём понятия
- Классы понятий и отношение между понятиями
- § 18. С точки зрения реального существования предметов понятий все понятия делятся на: 1) конкретные и 2) абстрактные, или отвлечённые.
- § 19. С точки зрения количества предметов, мыслимых посредством понятий, все понятия делятся на 1) общие, 2) единичные и 3) собирательные.
- § 25. И класс совместимых понятий и класс понятий несовместимых в свою очередь заключают в себе каждый дальнейшие подразделения.
- § 28. Родовое понятие, будучи более широким, чем видовое, по объёму, заключает в своём содержании, меньшее сравнительно с видовым понятием количество признаков.
- Глава IV. Логические действия над понятиями Представление и понятие
- Определение понятия
- Генетическое определение
- Ограничение понятия
- Обобщение понятия
- Разделение понятия
- § 19. Из всех возможных ошибок деления самой значительной является ошибка, состоящая в отступлении от принятого при делении основания.
- Дихотомия
- § 21. Существует приём деления, свободный от ошибок, встречающихся при других способах деления. Называется этот приём «дихотомией», т. Е. Делением надвое.
- Глава V. Суждение и его состав. Виды суждений Состав суждения. Субъект и предикат
- § 1. В логическом мышлении понятие обычно встречается не само по себе, но в составе суждения в связи с другими понятиями, входящими в суждение.
- § 2. В главе о понятии мы уже познакомились с членами суждения – с «субъектом» и «предикатом». Рассмотрим подробнее их логическую функцию в суждении и возможные виды отношений между ними.
- § 3. Хотя субъект суждения всегда есть мысль о каком-то предмете, но субъект суждения и самый предмет суждения не одно и то же.
- Основные логические типы суждений
- Суждение как форма выражения истины
- § 10. Высказывание может иметь в мышлении самое различное назначение. Высказывание может выражать чувство («я люблю музыку Бородина»), желание («я хочу написать письмо отцу») и т. Д.
- Качество суждения
- § 19. Кроме общих и частных суждений с точки зрения количества различаются также ещё единичные суждения.
- § 22. Но и независимо от возможности перехода частного суждения в общее всяким общим суждением предполагаются суждения частные и единичные. И это справедливо даже относительно суждений математики.
- Модальность суждений
- Глава VI. Субъект и предикат суждения. Распределенность терминов Отношение между субъектом и предикатом суждения
- Отношение между объемами субъекта и предиката в суждениях о принадлежности предмета классу предметов
- Распределённость субъекта и предиката в суждении
- § 16. Из рассмотренного примера видно, что в одном и том же суждении один термин может оказаться распределённым, другой – нераспределённым.
- Распределённость субъекта и предиката в суждениях о принадлежности предмета классу предметов
- § 24. В частноотрицательных суждениях (о) о принадлежности предмета классу предметов субъект не распределён, но предикат распределён.
- Глава VII. Установление точного логического смысла суждений. Преобразования формы суждений Установление точного логического смысла суждений
- Обращение
- § 13. На чём основывается логическая операция обращения? Что даёт нам право поменять местами предикат и субъект суждения?
- Превращение
- § 21. Второй вид преобразования формы суждений, не изменяющего содержания суждений, составляет превращение.
- Глава VIII. Сопоставление суждений Виды сопоставляемых суждений
- Противопоставление суждений по противоположности
- § 4. При противопоставлении противоположных суждений возможны следующие три случая:
- Противоречащие суждения
- § 5. Отношения противоречащей противоположности определяются следующими правилами:
- Контрарные суждения
- § 6. Контрарные суждения не могут быть оба вместе истинными. Правило это, общее для обоих видов противоположных суждений, основывается на законе противоречия.
- Подконтрарные суждения
- Сопоставление суждений по подчинению
- «Логический квадрат»
- § 12. Расположив знаки качества и количества суждений по вершинам квадрата, легко замечаем, что боковые стороны квадрата ai и ео наглядно представляют отношения подчинения.
- Глава IX. Умозаключения Определение умозаключения
- Деление умозаключений на силлогистические и несиллогистические
- § 7. В практике логического мышления встречаются различные виды умозаключений. Чтобы распределить умозаключения по видам, необходимо исходить из анализа посылок, т.Е. Суждений.
- Простой категорический силлогизм
- Все лягушки - амфибии. S – m
- § 11. Рассмотрим теперь другой пример силлогизма:
- § 12. Рассмотрим третий пример силлогизма:
- § 13. Чтобы выяснить роль каждой фигуры, т. Е. Характер выводов, которые могут быть получены посредством этой фигуры, необходимо познакомиться с разновидностями фигур, или модусами.
- Правила распределённости терминов в посылках и выводах силлогизма
- § 17. Третье общее правило формулируется так: чтобы вывод был возможен, средний термин (м ) должен быть распределен по крайней мере в одной из посылок.
- Правила, определяющие связь между качеством и количеством посылок и выводов силлогизма
- § 20. Шестое общее правило формулируется так: если вывод из данных посылок вообще возможен и если одна из посылок при этом отрицательная, то вывод также будет отрицательный.
- § 25. Из сказанного видно, что различные по качеству и количеству силлогистические выводы требуют различных условий распределённости терминов в посылках.
- Первая фигура и её особые правила
- Вторая фигура и её особые правила
- § 33. Перейдём к рассмотрению второй фигуры простого категорического силлогизма:
- Логический ход умозаключения в силлогизмах первой и второй фигур
- § 38. Логический ход умозаключения в силлогизмах второй фигуры существенно отличается от хода умозаключений в силлогизмах первой фигуры.
- Третья фигура и её особые правила
- § 39. Третья фигура простого категорического силлогизма:
- Логический ход умозаключения по третьей фигуре
- Четвёртая фигура и её особые правила
- Сведение всех фигур простого категорического силлогизма в первой фигуре
- § 45. Существует более сложный способ сведения. Способ этот применяется при сведении некоторых выводов, по второй и по третьей фигуре к выводу по первой.
- Все планеты обращаются вокруг солнца, м – р
- Аксиома силлогизма и две еe формулы
- Условия истинности силлогистических выводов
- Логические ошибки, встречающиеся в силлогизмах
- § 52. Некоторые из логических ошибок неправильного вывода, особенно часто встречающиеся в практике мышления, заслуживают быть особо отмеченными.
- § 53. Вторая встречающаяся в практике силлогистических выводов ошибка состоит в том, что делают вывод по второй фигуре из двух утвердительных посылок.
- Глава X. Виды силлогизмов Условный силлогизм
- § 1. Кроме простых категорических силлогизмов существуют ещё условные и разделительные силлогизмы.
- § 2. В условном силлогизме по крайней мере одна из посылок – условная. Что касается другой посылки, то она может быть либо условной, либо категорической.
- § 6. Условно-категорический силлогизм в свою очередь имеет две разновидности, иди два модуса.
- § 7. Второй модус условно-категорического силлогизма представляет иной ход мысли.
- Ошибки, возможные в условно-категорическом силлогизме
- § 9. Другой вид логической ошибки, возможной в условно-категорическом силлогизме, возникает в случае, когда пытаются заключать от истинности следствия к истинности основания.
- § 10. В некоторых случаях может сложиться впечатление, будто правильный вывод от истинности следствия к истинности основания всё же возможен.
- Простой разделительный силлогизм
- Дилемма
- Разделительно-категорический силлогизм
- § 16. Другой модус разделительно-категорического силлогизма противоположен предыдущему. Вот его пример:
- Ошибки, возможные в разделительно-категорическом силлогизме
- § 17. Модус tollendo ponens и модус ponendo tollens – два единственных модуса разделительно-категорического силлогизма, по которым может быть получен правильный вывод.
- Сокращённые силлогизмы
- Эпихейрема
- Сложные силлогизмы
- § 24. Сорит применяется в случаях, когда необходимо последовательно обозреть длинную цепь звеньев подчинения.
- Глава XI. Несиллогистические умозаключения. Индукция и её виды Несиллогистические умозаключения
- Несиллогистические индуктивные умозаключения
- § 6. Первая и наиболее резко бросающаяся в глаза черта, отличающая индуктивные умозаключения от силлогизмов, состоит в том, что посредством индукции из частных посылок могут получаться общие выводы.
- § 8. Напротив, в индуктивных умозаключениях даже из достоверных посылок далеко не всегда могут быть получены достоверные выводы.
- Полная индукция
- Неполная индукция
- Неполная индукция через простое перечисление
- Неполная индукция через отбор, исключающий случайности обобщения
- § 21. В индуктивных выводах этого рода обобщение, так же как и в случае неполной индукции через простое перечисление, делается на основе только некоторой части фактов известного рода.
- Неполная индукция Бэкона
- Пять основных видов или методов бэконовской индукции
- 1. Метод сходства
- § 30. Так как одно и то же действие может, вообще говоря, вызываться различными причинами, то метод сходства даёт не окончательно достоверное, но лишь вероятное заключение о причине явления.
- 2. Метод различия
- 3. Соединённый метод сходства и различия
- § 38. Мы рассмотрели метод сходства и метод различия каждый в отдельности. Но при исследовании причинной связи явлений эти методы иногда применяются вместе.
- § 39. Схема соединённого метода сходства и различия
- 4. Метод остатков
- 5. Метод сопутствующих изменений
- § 46. Напротив, между выводом по методу остатков и выводом по методу сопутствующих изменений имеется важное различие.
- Логические ошибки, возможные в индуктивных выводах
- § 48. При использовании всех рассмотренных индуктивных методов возможны, как и во всех действиях мышления, логические ошибки.
- Глава XII. Индукция и дедукция Логическое основание и логическая формула выводов о вероятности
- § 1. Рассмотренные в предыдущей главе формы индуктивных умозаключений в некоторых отношениях образуют группы выводов, отличных от силлогистических выводов.
- § 5. Так обстоит дело, если сравнивать дедуктивные и индуктивные выводы с точки зрения логического процесса, или логического обоснования вывода.
- § 8. Наконец, и в третьем отношении – в отношении цели или задачи умозаключения – противоположность между индукцией и дедукцией также не может быть признана безусловной.
- Оценка вероятности индуктивных умозаключений
- § 15. Из сравнения индуктивных выводов с дедуктивными было выведено, что, кроме полной индукции, дающей достоверные заключения, все остальные виды индукции дают заключения вероятные.
- Глава XIII. Гипотетические умозаключения, или гипотезы. Умозаключения по аналогии Построение гипотез и их превращение в достоверную истину
- § 5. В отличие от всех этих форм вывода гипотетический вывод, так же как и вывод по второй фигуре простого категорического силлогизма, исходит из сравнения не субъектов, а предикатов посылок.
- § 6. Но можем ли мы считать достоверным, что предположенная нами причина действительно есть основание для субъекта всех этих предикатов?
- § 12. Второй случай превращения гипотезы в достоверную истину , есть случай, когда положение, составляющее содержание гипотезы, выводится как следствие из достоверных посылок.
- Главнейшие логические типы гипотез
- Аналогия
- § 26. Почему же в одних случаях аналогия оказывается истинной, а в других – ложной?
- Глава XIV. Доказательство и его строение. Виды доказательств Доказательство
- § 5. Этим различием между выводом и доказательством определяется строение доказательства.
- Главнейшие виды доказательств
- Доказательства по существу
- Генетические доказательства
- § 20. Мы уже знаем, что вторую группу доказательств после доказательств по существу составляют так называемые генетические доказательства, или доказательства по источнику происхождения.
- § 21. Генетические доказательства, как всякие доказательства, представляют либо установление истинности тезиса (его оправдание), либо обнаружение его ложности (его опровержение).
- Роль практики и опыта в доказательствах
- § 27. Это различие между науками математическими и науками эмпирическими, т. Е. Доказывающими свои положения на основе прямого обращения к опыту, порождает различив в видах доказательства.
- Опровержение
- Основания как части доказательств
- § 33. Все исходные основания являются либо определениями основных понятий данной науки, либо её аксиомами.
- § 35. В отличие от определения, которое только устанавливает содержание понятия, аксиома есть утверждение, которое рассматривается в данной науке как заведомо истинное, хотя оно нигде не доказывается.
- § 37. Но аксиомы даже не являются положениями безусловно очевидными.
- Ошибки относительно доказываемого тезиса
- Ошибки в основаниях доказательства
- § 45. Ошибки второго вида, возможные в доказательствах, вытекают из ошибок в основаниях. Есть три главные разновидности этих ошибок.
- § 50. Мы рассмотрели группу ошибок заведомо ложного основания и группу ошибок сомнительного (недоказанного) основания с их главными разновидностями.
- Ошибки в аргументации, посредством которой доказывается тезис
- § 55. Другим источником ошибки утверждения терминов являются синонимы. Так называются различные словесные выражения одной и той же мысли.
- И, наконец, почему мы видим, что многие вещи
- Содержание
- Глава X. Виды силлогизмов 121
- Глава XI. Несиллогистические умозаключения. Индукция и её виды 138
- Глава XII. Индукция и дедукция 169
- Глава XIII. Гипотетические умозаключения, или гипотезы. Умозаключения по аналогии 182
- Глава XIV. Доказательство и его строение. Виды доказательств 197