§ 2. Искусственные и естественные языки
Такое бурное и успешное развитие дедуктивной логики привело к формулировке понятия формальной дедуктивной (аксиоматической) системы, к рассмотрению структуры которой мы ниже вкратце и обратимся. Дедуктивная система – это область мышления и языка, в высокой степени обработанная средствами дедуктивной логики и получающая в связи с этим некоторый законченный и организованный вид.
В первую очередь формальная дедуктивная система представляет из себя некоторый искусственный язык, специально приспособленный для описания определенной математической структуры. Вкратце мы уже касались некоторых идей, связанных с дедуктивными системами, в параграфе первой главы первого раздела, посвященного логическим теориям, описывающим структуры. Здесь будет сделан еще один шаг в направлении более подробного описания средств современной дедуктивной логики.
Очень часто учащихся и неспециалистов вводит в заблуждение термин «формальный» в применении к логическим языкам дедуктивной логики. Сегодня логика, как и математика вообще, во многом строится с применением множества специальных символов («значков»), которые кажутся бессмысленной абракадаброй несведущему человеку. Но в этом случае с равным успехом формальным можно называть, например, и язык нотной записи музыкальных произведений, который не менее понятен для непосвященного. Поэтому само по себе использование специального языка еще не означает чего-то обязательно «формального». Необходимо специально оговориться, в каком смысле искусственные языки логики и математики считаются формальными.
Под формальным можно понимать, по крайней мере, две вещи: во-первых, степень выражения в языковых средствах предмета языка (того, о чем говорит язык), во-вторых, степень общего, универсального, выражаемого языком. С первой точки зрения, обычные языки, например, русский, английский могут быть названы более формальными, чем язык математики. В самом деле, математический язык специально строится так, чтобы в структуре символов этого языка уже выражался предмет языка. Поэтому в математических языках форма и содержание языка гораздо более подобны друг другу, чем в языках обычных, и в этом смысле математические языки гораздо более содержательны. Вот почему можно порой работать с математическими знаками, не понимая их смысла (как это делается в компьютерах). Ведь уже в самой структуре математического знака заложен до некоторой степени закон его содержания. В разговорных языках на форму знаков (например, слов, букв) гораздо больше влияет природа пользователя этого языка, например, устройство гортани человека, позволяющей издавать фиксированный набор звуков. Поэтому в ненаучных языках больше разрыв между формой и содержанием знака, и в этом смысле они более формальны.
Во втором смысле, при понимании формальности как универсальности, конечно, более формальны математические языки. Они создаются для выражения очень общих и универсальных понятий и законов, в то время как обычный язык во многом порожден жизнью человека в близком ему опыте.
Искусственные языки науки и естественный язык взаимно дополняют друг друга. Искусственные языки более универсальны в своей области и обладают формой, более подобной своему содержанию. Однако искусственные языки практически ничего не могут сказать вне сферы своей компетенции, в то время как естественный язык способен сказать понемногу обо всем. Не надо думать, что можно было бы обойтись без искусственных языков, и их использование – результат лишь некоторого удобства. Есть много вещей, о которых либо вообще нельзя сказать, либо удается сказать очень приблизительно и неадекватно средствами естественного языка. В этом смысле овладение тем или иным искусственным языком – языком физики, математики, логики - оказывается во многом процессом приобретения нового органа понимания и выражения, этот момент нельзя недооценивать особенно в современном научном познании, насыщенном сложнейшими искусственными языковыми системами. Если различные естественные языки можно было бы называть синтаксическими (синтаксис – правила построения знаков языка), т.к. они различаются не столько смыслами, сколько звуковыми и письменными оболочками этих смыслов, в связи с чем давно возможен достаточно хороший перевод между такими языками; то разнообразие искусственных языков математики и других наук представляет из себя пример семейства семантических языков (семантика – наука об отношении знаков и их содержания), существенно различающихся системами выражаемых ими смыслов. Для перевода таких языков между собой необходим некоторый семантический гиперязык, способный объединить в себе смысловые пространства и подобные им знаковые формы различных искусственных языков. В наибольшей мере такой язык присутствует в современной математике, но, по-видимому, и его ресурсов пока существенно не хватает для переводов с языка одной частной науки на язык другой. Создание такого гиперязыка – это во многом проблема создания более универсального смысла, который еще отсутствует в современной науке. Другим возможным источником синтетического гиперязыка является философия, но до сих пор она слишком мало взаимодействовала с искусственными языками других наук, пытаясь максимально обходиться средствами естественного языка.
Одним из наиболее типичных примеров семантических языков как раз является искусственный язык современной дедуктивной логики.
- Часть 1. Понятие науки
- Глава 1. Феномен науки
- § 1. Удивление как начало научного познания
- § 2. Понятие о структуре
- § 3. Логические теории, описывающие структуры
- § 4. Эмпирическая реализация структуры
- § 5. Понятие о научном логосе
- § 6. Наука как субъект
- § 7. Наука в обществе
- § 8. Наука в истории
- § 9. Система наук
- Глава 2. Основания науки
- § 1. Примеры процедур обоснования
- § 2. Общая структура процедуры обоснования
- § 3. Фундаментализм и антифундаментализм
- § 4. Сетевая модель рациональности
- § 5. Метод последовательных приближений
- Глава 3. Наука и культура
- § 1. Определения культуры
- § 2. Культура как онтология
- § 3. Культура и наука как субъектные онтологии
- § 4. Проблема логоса субъектных онтологий
- Часть 2. Методы и формы научного познания
- § 1.Чувственное и рациональное познание
- Раздел 1. Эмпирические методы научного познания
- § 1. Наблюдение
- § 2. Измерение
- § 3. Эксперимент
- § 4. Теоретическая нагруженность эмпирического познания
- Раздел 2. Теоретические методы научного познания
- Глава 1. Индукция в научном познании
- § 1. Математическая индукция
- § 2. Перечислительная (энумеративная) индукция
- § 3. Элиминативная индукция
- § 4. Индукция как обратная дедукция
- § 5. Аналогия
- § 6. Парадокс лысого
- Глава 2. Дедукция в научном познании
- § 1. Немного об истории дедуктивного познания
- § 2. Искусственные и естественные языки
- § 3. О законах формальной логики
- § 4. Формальные символические языки
- § 5. Синтаксис и семантика
- Глава 3. Аксиоматико-дедуктивный и гипотетико-дедуктивный
- § 1. Аксиоматико-дедуктивный метод научного познания
- § 2. Гипотетико-дедуктивный метод научного познания
- Глава 4. Метод моделирования
- § 1. Модели и пределы
- § 2. Модели и интервал моделируемости
- § 3. О некоторых видах моделей
- Глава 5. Методы научного абстрагирования и идеализации
- § 1. Элиминативная теория абстракции
- § 2. Продуктивная теория абстракции
- Глава 6. Научная теория. Модели научного объяснения
- § 1. Гипотетико-дедуктивная модель научной теории
- § 2. Дедуктивно-номологическая модель научного объяснения
- § 3. Альтернативные модели научного объяснения
- § 4. Альтернативные модели научной теории
- Часть 3. Логико-методологические проблемы
- Глава 1. Методология системного подхода
- § 1. Основные понятия системного подхода
- § 2. Логика целого
- § 3. Виды целых
- § 4. Воплощение целого
- Глава 2. Философия и методология синергетики
- § 1. Феномен синергетики
- § 2. Синергетика и термодинамика
- § 3. Синергетика и теория особенностей
- § 4. Сводка основных понятий синергетики
- § 5. Обобщенный образ синергетической системы
- § 6. Сильная и слабая синергетика
- Глава 3. Методологические принципы
- § 1. Принцип наблюдаемости
- § 2. Принцип дополнительности
- § 3. Принцип соответствия
- § 4. Принцип симметрии
- Глава 4. Принцип детерминизма
- § 1. Дефинитивный детерминизм
- § 2. Жесткий (лапласовский) детерминизм
- § 3. Вероятностный детерминизм
- § 4. Проблема синтеза видов детерминизма
- Часть 4. Модели научного знания
- Глава 1. Логический позитивизм
- § 1. Этап догматического верификационизма
- § 2. Этап вероятностного верификационизма
- Глава 2. Модель науки Карла Поппера
- § 1. Фальсифицируемость как критерий демаркации
- § 2. Конвенционализм в философии Поппера
- § 3. Эволюция научного знания
- Глава 3. Модель науки Имре Лакатоса
- § 1. Доказательства и опровержения
- § 2. Процесс обогащения знания
- § 3. Философия исследовательских программ
- Глава 4. Модель науки Томаса Куна
- Глава 5. Модель науки Пола Фейерабенда
- Глава 6. К итогам развития философии науки
- Часть 5. Научная рациональность и ее типы
- § 1. Понятие рациональности
- § 2. Классическая научная рациональность
- § 3. Неклассическая научная рациональность
- § 4. Витализация образа материи в неклассической рациональности