logo

Индуктивное определение

- определение, позволяющее из некоторых исходных объектов теории с помощью некоторых операций строить новые объекты теории. И.о. находят широкое применение в математике, логике и других науках. Примером мо­жет быть И.о. натуральных чисел. Исходным объектом здесь будет число 0, исходной операцией — «следующее за п», т. е. операция, обеспечивающая переход от числа п к п + 1. Она обозначается «'» («n'» — «следующее за n»). И.о. состоит из ряда пунктов: 1) 0 явля­ется натуральным числом; 2) если п - натуральное число, то п' -натуральное число; 3) никаких натуральных чисел, кроме тех, ко­торые получаются согласно применению пунктов (1) и (2), нет.

Таково же определение четного числа. Исходным объектом здесь является число 0, исходной операцией — операция прибавления двойки (+2), И. о. состоит из таких пунктов: 1) 0- четное число; 2) если п - четное число, то п + 2 - четное число; 3) никаких (натуральных) чисел, кроме тех, которые порождены примене­нием пунктов (1) и (2), нет.

Примером И. о. может быть И. о. формулы в исчислении высказы­ваний.

[123]

Различают два основных вида И. о.: фундаментальные и нефундаментальные. Фундаментальными называются такие И. о., с помощью которых из исходных объектов порождается та или иная исходная предметная область. Нефундаментальными являют­ся И. о., с помощью которых из заранее определенной области объектов выделяется некоторое ее подмножество. Приведенные выше И. о. натурального числа и формулы в исчислении высказы­ваний являются фундаментальными, И. о. четного числа является нефундаментальным: предполагается, что область натуральных чи­сел дана с самого начала или порождена фундаментальным И. о., а мы на ней определяем некоторое подмножество натуральных чи­сел (т. е. множество «четные числа»).