logo
Асмус_Логика_2001

§ 35. В отличие от определения, которое только устанавливает содержание понятия, аксиома есть утверждение, которое рассматривается в данной науке как заведомо истинное, хотя оно нигде не доказывается.

Определение, само по себе взятое, ещё не говорит о необходимой истинности определяемого. Правда, в огромном большинстве случаев определения выражают то самое содержание предмета, которое существует в действительности. Но возможно точное определение и такого понятия, которое означает предмет, не существующий и не могущий существовать в действительности. Так, задача квадратуры круга, т. е. отыскания квадрата, площадь которого была бы в точности равновелика площади круга, есть задача неразрешимая, но самое понятие квадратуры круга может быть определено вполне точно.

Напротив, аксиома есть не условие, принятое относительно значения и содержания известного понятия, но некоторое утверждение, которое рассматривается в данной науке в качестве положения заведомо истинного.

§ 36. Иногда думают, будто аксиомы не доказываются потому, что истины, выражаемые в этих аксиомах, настолько очевидны, что не требуют никакого доказательства. Мнение это не совсем правильное. И действительно, очевидность истины, сама по себе взятая, ещё не освобождает от необходимости доказать эту истину, – если только такое доказательство может быть найдено. В геометрии, например, существует немало теорем, которые неспециалисту представляются совершенно очевидными в своей истинности и которые тем не менее доказываются со всей строгостью принятых в этой науке доказательств. Такова, например, теорема, согласно которой диаметр всякого круга делит этот круг на равные части и т. д.