§ 2. Общая структура процедуры обоснования
Во всех приведенных выше примерах мы можем наблюдать некоторую общую структуру обоснования. Везде, во-первых, есть то, что обосновывается. Это
-
дедуктивное заключение в дедукции
-
индуктивное заключение в индукции
-
определяемое понятие (дефиниендум) в определении
-
измеряемый объект в измерении
-
диссертация в защите диссертации
Далее будем называть обосновываемое репрезентатом.
Во-вторых, в любой процедуре обоснования мы находим некоторые основания, выведением из которых или подведением под которые осуществляется обоснование репрезентата. Это
-
дедуктивные посылки в дедукции
-
индуктивные посылки в индукции
-
определяющие понятия (дефиниенс) в определении
-
единица шкалы в измерении
-
эталон научности в защите диссертации
Наконец, можно говорить о самой процедуре обоснования как о некотором специфическом переходе от оснований к репрезентату. Такой переход можно называть актом обоснования. Это
-
вывод заключений из посылок в дедукции
-
вывод заключений из посылок в индукции
-
представление дефиниендума через дефиниенс в определении
-
процедура соотнесения измеряемого объекта с элементом шкалы в измерении
-
оценка диссертации в защите диссертации
В целом любую процедуру обоснования также можно было бы изобразить как двухуровневую структуру
А1, А2, …, Аn
В1, В2, …, Вm
где А1, А2, …, Аn – основания, В1, В2, …, Вm – репрезентаты, и в качестве акта обоснования выступает тот или иной вид перехода от оснований к репрезентатам.
Следует также заметить, что до проведения процедуры обоснования основания и репрезентаты находятся в двух разных состояниях. Если основания считаются чем-то несомненным, очевидным, необходимым (по крайней мере в рамках данной процедуры обоснования), то репрезентаты, наоборот, потому и подвергаются обоснованию, что они изначально рассматриваются как проблематичные, неочевидные, только лишь возможные. Первое состояние – состояние необходимости – будем далее называть L-статусом (от англ. Law - закон), а второе состояние – М-статусом (от англ. May - возможно). Более конкретно, нахождение в L-статусе некоторого состояния Х означает, что оно не может не быть, т.е. оно необходимо есть, исчерпывая собою некоторое пространство возможностей. Наоборот, нахождение в М-статусе дано тогда, когда состояние Х есть лишь одна из альтернатив, одна из возможностей в некотором более обширном пространстве возможностей.
Приведем примеры L-статусов:
-
В случае дедукции в L-статусе находятся посылки дедуктивного вывода. Например, это могут быть аксиомы или уже доказанные теоремы в некоторой теории. Аксиомы не требуют своего доказательства, они изначально истинны. Следовательно, L-статус здесь – это либо доказанность, либо истинность.
-
В индуктивном выводе ситуация та же: L-статус посылок индукции выражается в их истинности или доказанности.
-
В определении в L-статусе находятся более первичные понятия из дефиниенса. Здесь L-статус выражается в понятности этих понятий.
-
В измерении единица шкалы обладает L-статусом – она в максимальной степени измерена относительно самой себя, обнаруживая полное соответствие с собой. Другие элементы шкалы в меньшей мере обнаруживают такое соответствие, но в любом случае и они оказываются со-измеримыми единице шкалы. Такая со-измеримость (измеренность) и выражает идею L-статуса в данном случае.
-
В случае защиты диссертации в максимальной степени L-статус выражается в наибольшем соответствии эталону научности. Быть в L-статусе здесь – то же, что быть научным, быть адекватным некоторому идеалу научности.
Если до проведения процедур обоснования репрезентаты даны в М-статусе, то после проведения обоснования они должны также перейти в L-статус – в этом, по-видимому, и состоит смысл осуществления различных процедур доказательства и обоснования. Можно сказать и так, что в процедурах обоснования должен переноситься L-статус, в частности, акты обоснования должны обладать этим свойством: они должны переносить L-статус с оснований на репрезентаты. Если нахождение состояния Х в L-статусе обозначить как ХL, то структуру процедур обоснования теперь более точно можно было бы представить в следующем виде:
А1L, А2L, …, АnL
В1L, В2L, …, ВmL
Происходит переход не просто от оснований к репрезентатам, но – от оснований в L-статусе к репрезентатам в L-статусе. Процедуры обоснования – это трубки, по которым течет L-статус, распространяясь с оснований на репрезентаты. Например:
-
Дедукция должна переносить истинность с посылок на заключения
-
Индукция должна переносить по крайней мере степень истинности с посылок на заключения
-
Определение должно переносить понятность с дефиниенса на дефиниендум
-
Измерение должно переносить степень со-измерения объекта единице шкалы
-
Защита должна переносить научность с эталона на диссертацию
Постоянно используя различные процедуры обоснования, научное мышление распространяет разные виды L-статуса (истинность, доказанность, понятность, измеренность, научность) с оснований на репрезентаты, с одних – более ранних – репрезентатов на другие. Так энергия L-статуса, как своего рода сила кристаллизации и догматизации мысли, распространяется на все большие пространства смыслов и состояний, пытаясь превратить бытие в нерушимый научный кристалл. Однако, если бы в научной деятельности действовала только эта сила обоснования, то рано или поздно наука закончилась бы, заморозив тотальной претензией на обоснования все знание. Процедурам обоснования должны противостоять в развитии научного знания некоторые обратные активности, которые можно было бы назвать процедурами антиобоснования. Для получения общего вида процедуры антиобоснования достаточно перевернуть структуру процедур обоснования. Если дана некоторая процедура обоснования
А1L, А2L, …, АnL
В1L, В2L, …, ВmL
то в соответствие ей может быть поставлена следующая процедура антиобоснования
В1М, В2М, …, ВmМ
А1М, А2М, …, АnМ
распространяющая М-статус с репрезентатов на основания и выражающая критическое отношение сознания к основаниям.
Замечательно, что система научного бытия не только постоянно кристаллизуется разного рода процедурами обоснования, но и постоянно плавится критическим устремлением научного духа, который все время ставит под сомнение то, что ранее считалось несомненным. Так – в постоянных затвердениях и расплавлениях – существует и развивается наука.
- Часть 1. Понятие науки
- Глава 1. Феномен науки
- § 1. Удивление как начало научного познания
- § 2. Понятие о структуре
- § 3. Логические теории, описывающие структуры
- § 4. Эмпирическая реализация структуры
- § 5. Понятие о научном логосе
- § 6. Наука как субъект
- § 7. Наука в обществе
- § 8. Наука в истории
- § 9. Система наук
- Глава 2. Основания науки
- § 1. Примеры процедур обоснования
- § 2. Общая структура процедуры обоснования
- § 3. Фундаментализм и антифундаментализм
- § 4. Сетевая модель рациональности
- § 5. Метод последовательных приближений
- Глава 3. Наука и культура
- § 1. Определения культуры
- § 2. Культура как онтология
- § 3. Культура и наука как субъектные онтологии
- § 4. Проблема логоса субъектных онтологий
- Часть 2. Методы и формы научного познания
- § 1.Чувственное и рациональное познание
- Раздел 1. Эмпирические методы научного познания
- § 1. Наблюдение
- § 2. Измерение
- § 3. Эксперимент
- § 4. Теоретическая нагруженность эмпирического познания
- Раздел 2. Теоретические методы научного познания
- Глава 1. Индукция в научном познании
- § 1. Математическая индукция
- § 2. Перечислительная (энумеративная) индукция
- § 3. Элиминативная индукция
- § 4. Индукция как обратная дедукция
- § 5. Аналогия
- § 6. Парадокс лысого
- Глава 2. Дедукция в научном познании
- § 1. Немного об истории дедуктивного познания
- § 2. Искусственные и естественные языки
- § 3. О законах формальной логики
- § 4. Формальные символические языки
- § 5. Синтаксис и семантика
- Глава 3. Аксиоматико-дедуктивный и гипотетико-дедуктивный
- § 1. Аксиоматико-дедуктивный метод научного познания
- § 2. Гипотетико-дедуктивный метод научного познания
- Глава 4. Метод моделирования
- § 1. Модели и пределы
- § 2. Модели и интервал моделируемости
- § 3. О некоторых видах моделей
- Глава 5. Методы научного абстрагирования и идеализации
- § 1. Элиминативная теория абстракции
- § 2. Продуктивная теория абстракции
- Глава 6. Научная теория. Модели научного объяснения
- § 1. Гипотетико-дедуктивная модель научной теории
- § 2. Дедуктивно-номологическая модель научного объяснения
- § 3. Альтернативные модели научного объяснения
- § 4. Альтернативные модели научной теории
- Часть 3. Логико-методологические проблемы
- Глава 1. Методология системного подхода
- § 1. Основные понятия системного подхода
- § 2. Логика целого
- § 3. Виды целых
- § 4. Воплощение целого
- Глава 2. Философия и методология синергетики
- § 1. Феномен синергетики
- § 2. Синергетика и термодинамика
- § 3. Синергетика и теория особенностей
- § 4. Сводка основных понятий синергетики
- § 5. Обобщенный образ синергетической системы
- § 6. Сильная и слабая синергетика
- Глава 3. Методологические принципы
- § 1. Принцип наблюдаемости
- § 2. Принцип дополнительности
- § 3. Принцип соответствия
- § 4. Принцип симметрии
- Глава 4. Принцип детерминизма
- § 1. Дефинитивный детерминизм
- § 2. Жесткий (лапласовский) детерминизм
- § 3. Вероятностный детерминизм
- § 4. Проблема синтеза видов детерминизма
- Часть 4. Модели научного знания
- Глава 1. Логический позитивизм
- § 1. Этап догматического верификационизма
- § 2. Этап вероятностного верификационизма
- Глава 2. Модель науки Карла Поппера
- § 1. Фальсифицируемость как критерий демаркации
- § 2. Конвенционализм в философии Поппера
- § 3. Эволюция научного знания
- Глава 3. Модель науки Имре Лакатоса
- § 1. Доказательства и опровержения
- § 2. Процесс обогащения знания
- § 3. Философия исследовательских программ
- Глава 4. Модель науки Томаса Куна
- Глава 5. Модель науки Пола Фейерабенда
- Глава 6. К итогам развития философии науки
- Часть 5. Научная рациональность и ее типы
- § 1. Понятие рациональности
- § 2. Классическая научная рациональность
- § 3. Неклассическая научная рациональность
- § 4. Витализация образа материи в неклассической рациональности