logo
Асмус_Логика_2001

§ 13. Чтобы выяснить роль каждой фигуры, т. Е. Характер выводов, которые могут быть получены посредством этой фигуры, необходимо познакомиться с разновидностями фигур, или модусами.

Сравнивая различные выводы, сделанные по одной и той же фигуре, замечаем, что силлогизмы одной и той же фигуры могут различаться между собой качеством в количеством посылок и вывода.

Сравним два силлогизма:

Оба эти силлогизма – силлогизмы первой фигуры, так как в обоих средний термин является субъектом в большей и предикатом в меньшей посылке. Но в то же время между этими двумя силлогизмами первой фигуры имеется и различие. Состоит оно в различном качестве посылок и вывода. В первом силлогизме обе посылки и вывод – суждения общеутвердительные. Схема этого силлогизма:

Во втором силлогизме большая посылка есть суждение общеотрицательное, меньшая – общеутвердительное, вывод – суждение общеотрицательное. Схема этого силлогизма:

Сравним ещё два силлогизма:

Оба эти силлогизма – также силлогизмы первой фигуры, так как в обоих средний термин является субъектом в большей и предикатом в меньшей посылке. Но в то же время между этими двумя силлогизмами первой фигуры имеется и различие. Состоит оно в различном качестве и количестве посылок и вывода. В первом силлогизме и посылки и вывод по качеству – суждения утвердительные. По количеству же большая посылка – суждение общее, меньшая – частное, вывод – также частное. Схема этого силлогизма:

Во втором силлогизме большая посылка есть суждение общеотрицательное, меньшая – частноутвердительное, вывод – суждение частноотрицательное. Схема этого силлогизма:

Сравнивая качество и количество выводов во всех четырёх примерах силлогизма первой фигуры, приведённых выше, видим, что в первом примере вывод – общеутвердительный («все бамбуковые – однодольные растения»), во втором – общеотрицательный («ни одно бамбуковое не есть двудольное растение»), в третьем - частноутвердительный («некоторые бесцветковые – споровые растения»), в четвёртом – частноотрицательный («некоторые светила – не звёзды»).

Разновидности силлогизмов одной и той же фигуры, обусловленные различным качеством и количеством посылок и выводов, называются модусами (от латинского слова «modus», означающего «способ», «вид»),

§ 14. Итак, среди выводов простого категорического силлогизма могут встретиться выводы всех возможных видов качества и количества: А, Е, I и О. Но мы уже знаем, что различные по качеству и по количеству суждения имеют различное применение в знании и различную ценность для знания. Поэтому при изучении силлогизмов всех трёх фигур большой интерес представляет вопрос, какие именно модусы может дать каждая фигура силлогизма, иначе говоря, какими могут быть выводы этой фигуры по качеству и по количеству.

Для ответа на этот вопрос необходимо прежде всего исследовать, все ли теоретически возможные модусы, т. е. все ли сочетания посылок, отличающиеся только качеством и количеством, способны давать правильные выводы.

Исследование показывает, что не всякий теоретически возможный модус, т. е. не всякое сочетание качества и количества в посылках силлогизма, даёт правильный вывод.

Рассмотрим, например, суждения:

Все студенты обязаны держать экзамены.

Все аспиранты – не студенты.

В этих суждениях налицо три понятия, расположенные по схеме первой фигуры простого категорического силлогизма. Термин «студенты» в одной из посылок является субъектом, в другой – предикатом. В одной посылке устанавливается отношение термина «студенты» к одному понятию, в другой – отношение того же термина к другому понятию.

Итак, расположение терминов в суждениях как будто в точности соответствует схеме первой фигуры:

Первое суждение будет общеутвердительное, второе – общеотрицательное.

Схематически количество и качество этих суждений будет следующее:

A

E

Но хотя расположение терминов в этом случае как будто отвечает условиям первой фигуры, правильный вывод из этих двух посылок невозможен. Из того, что «все студенты обязаны держать экзамены», и из того, что «все аспиранты – не студенты», никак нельзя вывести в качестве необходимого заключения, что, например, «аспиранты не обязаны держать экзамены». Хотя первая посылка выясняет отношение «студентов» к «лицам, обязанным держать экзамены», а вторая – отношение «студентов» к «аспирантам», – отношения эти не таковы, чтобы из них видно было, каким должно быть отношение «аспирантов» к «лицам, обязанным держать экзамены». Как видно из рисунка (см. рис. 47), здесь логически возможны – при данных посылках – три случая. Не будучи студентами (М), аспиранты (S) 1) могут все принадлежать к числу лиц, обязанных держать экзамены (Р), 2) могут принадлежать к числу этих лиц лишь в некоторой своей части и 3) могут вовсе не принадлежать к числу этих лиц.

Итак, некоторые модусы, например модус АЕ первой фигуры силлогизма, невозможны. Это значит, что качество и количество посылок в этих модусах не дают основания для правильного логического вывода. Поэтому для ответа на вопрос, какие модусы даёт каждая из трёх фигур простого категорического силлогизма, необходимо прежде всего выяснить условия или правила, которым должны удовлетворять посылки и входящие в эти посылки термины, чтобы вывод оказался действительно возможным.

Рис. 47

При этом оказывается, что существуют правила, общие для всех фигур силлогизма. Во всяком простом категорическом силлогизме, какова бы ни была его фигура, каков бы ни был модус этой фигуры, должны выполняться все общие для всех силлогизмов правила. Нарушение хотя бы одного из них делает умозаключение ошибочным.

Кроме правил, общих для всех фигур силлогизма, существуют и такие правила, которые являются особыми правилами для каждой фигуры силлогизма в отдельности. Правила эти обязательны для всех модусов данной фигуры силлогизма и не обязательны для модусов других фигур.

§ 15. Существуют десять правил, общих для всех фигур простого категорического силлогизма. Из этих десяти общих правил два определяют число терминов и число суждений, входящих в состав силлогизма. Два других правила определяют необходимые условия распределённости терминов в посылках и в выводах силлогизма. Остальные общие правила определяют необходимую связь между качеством и количеством посылок и качеством и количеством выводов (заключений) силлогизма.

Правила, определяющие число терминов и число суждений в силлогизме

Первое из общих правил состоит в том, что терминов в силлогизме должно быть три – не больше и не меньше. Если терминов только два, то вывод не может дать ничего нового и сведётся к простому повторению одной из посылок. Например, «бамбуки – злаки», «злаки – злаки», следовательно, «бамбуки – злаки». Если терминов четыре, то вывод невозможен, так как в одной из посылок устанавливается отношение субъекта к одному термину, а в другой – отношение предиката к другому термину. Здесь нет посредствующего термина, через который могло бы быть установлено отношение или связь между субъектом и предикатом в выводе. Например, в посылках «все законы публикуются в официальных изданиях» и «всемирное тяготение – закон» понятие о публикации в официальных изданиях поставлено в отношение к понятию закона в смысле политическом, а понятие всемирного тяготения – в отношение к понятию закона природы. Так как слово «закон» обозначает здесь два различных понятия, то в наших посылках оказалось не три, а четыре термина, термин субъекта («всемирное тяготение») оказался никак не связанным с термином предиката («публикация в официальных изданиях»), и вывод, т. е. суждение, которое устанавливало бы связь между понятиями «всемирное тяготение» и «публикация в официальных изданиях», оказался невозможным.

§ 16. Второе общее правило формулируется так: в силлогизме не может быть меньше и не может быть больше трёх суждений. Правило это вытекает из самой сущности силлогизма. Как мы уже знаем, целью силлогизма является выяснение отношения между двумя понятиями из уже известного отношения каждого из них в отдельности к одному и тому же третьему понятию.

Отсюда видно, во-первых, что в силлогизме должно быть не меньше трех суждений. И действительно, в одном из них (меньшая посылка) раскрывается отношение понятия S к посредствующему третьему понятию М. В другом (большая посылка) раскрывается отношение другого понятия – Р к тому же посредствующему третьему понятию М. Наконец, в третьем суждении (вывод или заключение силлогизма) выясняется, какое отношение понятия S к понятию Р необходимо следует из уже раскрытого в посылках отношения каждого из них в отдельности к М.

Правда, по многих случаях может показаться, будто силлогизм состоит не из трёх, но всего лишь из двух и даже из одного суждения. Так, в умозаключении «бамбуки, как все злаки, цветут колосками» силлогизм выражен посредством одного сложного предложения. В умозаключении «все злаки цветут колосками, следовательно, все бамбуки цветут колосками» силлогизм выражен посредством двух предложений. Таких примеров можно было бы привести множество.

Однако во всех этих и подобных им случаях нас вводит в заблуждение грамматическая форма высказывания. Мы уже знаем, что грамматические формы предложения далеко не всегда совпадают с логическими формами мышления. То же имеет место и в наших примерах. В действительности силлогизм и в этих примерах состоит из трёх суждений. Однако часть этих суждений – в силу быстроты мышления или стремления к краткости и сжатости выражения – только подразумевается, остаётся невысказанной в форме трёх раздельных предложений, выражающих три раздельные суждения. И всё же каждый из этих силлогизмов может быть – без какого бы то ни было изменения его логического смысла – выражен в обычной и обязательной для всех силлогизмов форме трёх суждений: двух посылок и вывода. Так, сокращённый силлогизм «бамбуки, как все злаки, цветут колосками» легко развёртывается в полный силлогизм: «все бамбуки–злаки, все злаки цветут колосками, следовательно, бамбуки цветут колосками». К той же полной и обязательной для всех силлогизмов форме трёх суждений легко приводится второй силлогизм нашего примера: «все злаки цветут колосками, следовательно, бамбуки цветут колосками».

Но в силлогизме, во-вторых, не может быть и больше трех суждений. Выше уже было доказано, что суждений в силлогизме должно быть не меньше трёх. Из этих обязательных трёх суждений вывод устанавливает искомое отношение между S и Р, большая посылка – отношение между М и Р, меньшая – отношение между М и S. Вопрос о том, могут ли входить в состав силлогизма ещё какие-либо суждения кроме указанных трёх, сводится к вопросу, возможны ли кроме обязательных для каждого силлогизма трёх сочетаний по два термина из S, М, Р ещё какие-либо сочетания по два термина из тех же трёх терминов S, М и Р. Но таких сочетаний не может быть больше трёх. Поэтому в простом категорическом силлогизме не может быть больше трёх суждений.