§ 3. Логические теории, описывающие структуры
Обычно структуры требуют более-менее специальный язык для своего описания. Дело в том, что составляющие структур – это разного рода новые абстракции, для которых либо не было вообще названий в обычном языке, либо эти названия употреблялись несколько иначе. Когда математики или ученые других наук создают новые структуры для описания оснований выбора, то они обычно придумывают новые или по-особому используют старые слова. Например, слово «вектор» или «электрон» было создано заново с открытием соответствующей структуры или объекта, а вот слова «энергия» или «сила», хотя уже и существовали в обычном языке, но использовались не так, как это стали делать физики. Кроме того, наука предъявляет более высокие требования к процедурам вывода следствий из оснований выбора, в связи с чем наука активно использует логику. В связи с этим, языки науки – это обычно более логически обработанные языки, чем обычные языки.
Если используется язык для описания некоторой структуры, то в этом языке, во-первых, должны быть имена для основных составляющих структуры: 1) для элементов структуры, 2) для операций и 3) предикатов структуры. Например, выше мы использовали символ «<» для обозначения отношения «меньше», символы 1, 2, 3 – для обозначения чисел один, два, три, символ «+» - для обозначения операции сложения.
На языке, описывающем ту или иную структуру, формулируется логика этой структуры. Так возникает логическая теория, в рамках которой описываются логические свойства некоторой структуры. Например, для описания свойств структуры N на множестве натуральных чисел используется Теория Арифметики как логическая теория этой структуры. Логическая теория обычно содержит разного рода аксиомы и правила логического вывода, позволяющие из аксиом выводить теоремы. Например, в Теории Арифметики в качестве аксиом могут приниматься следующие выражения: m+n = n+m, m(n+p) = mn + mp, и т.д. В логической теории, описывающей иерархическую структуру, в качестве аксиомы может приниматься свойство транзитивности: если x<y и y<z, то x<z. Более подробно мы обратимся к структуре логической теории позднее.
В общем случае научное знание может быть более или менее формальным, в зависимости от того, насколько специализирован язык той логической теории, которая используется в этой науке. Если этот язык практически не выделен из обычного (например, разговорного русского) языка, то говорят о содержательной теории. Если же язык высокоспециализирован и использует множество новых символов, которых нет в обычном языке, насыщен логическими процедурами, то говорят о формализованной научной теории. С другой стороны, научные языки могут отличаться не только степенью формальности, но и степенью логической обработки. Тогда, если язык сильно логически обработан, так что в нем явно выделены аксиомы, правила логического вывода и теоремы, то научная теория с таким языком называется аксиоматической теорией. Характеристики содержательности-формальности и степени аксиоматичности научных теорий могут быть до некоторой степени относительно независимыми друг от друга, в связи с чем здесь могут встречаться все возможные комбинации: 1) формальные аксиоматические теории – это, например, теории математики и физики, 2) формальные неаксиоматические теории. Например, это разного рода теории систематики в биологии или психологии, в которых используется специальная терминология для обозначения разных видов организмов (или психологических типов), но только этим дело преимущественно и ограничивается. 3) содержательные аксиоматические теории – хотя в этих теориях используется обычный язык, но логически эта теория может быть обработана больше, чем обыденное знание. Например, часто в форме такого рода теорий выступают те или иные разделы философского или гуманитарного знания. 4) содержательные неаксиоматические теории – это, как правило, самые первые этапы развития научного знания, когда в них научность выражается еще только в первоначальном накоплении фактов.
Но все же необходимо отметить, что такого рода независимость возможна только до некоторой степени. Начиная с определенного уровня, уже нельзя достичь достаточно высокого уровня аксиоматизации научного знания без достаточной формализации, и наоборот.
- Часть 1. Понятие науки
- Глава 1. Феномен науки
- § 1. Удивление как начало научного познания
- § 2. Понятие о структуре
- § 3. Логические теории, описывающие структуры
- § 4. Эмпирическая реализация структуры
- § 5. Понятие о научном логосе
- § 6. Наука как субъект
- § 7. Наука в обществе
- § 8. Наука в истории
- § 9. Система наук
- Глава 2. Основания науки
- § 1. Примеры процедур обоснования
- § 2. Общая структура процедуры обоснования
- § 3. Фундаментализм и антифундаментализм
- § 4. Сетевая модель рациональности
- § 5. Метод последовательных приближений
- Глава 3. Наука и культура
- § 1. Определения культуры
- § 2. Культура как онтология
- § 3. Культура и наука как субъектные онтологии
- § 4. Проблема логоса субъектных онтологий
- Часть 2. Методы и формы научного познания
- § 1.Чувственное и рациональное познание
- Раздел 1. Эмпирические методы научного познания
- § 1. Наблюдение
- § 2. Измерение
- § 3. Эксперимент
- § 4. Теоретическая нагруженность эмпирического познания
- Раздел 2. Теоретические методы научного познания
- Глава 1. Индукция в научном познании
- § 1. Математическая индукция
- § 2. Перечислительная (энумеративная) индукция
- § 3. Элиминативная индукция
- § 4. Индукция как обратная дедукция
- § 5. Аналогия
- § 6. Парадокс лысого
- Глава 2. Дедукция в научном познании
- § 1. Немного об истории дедуктивного познания
- § 2. Искусственные и естественные языки
- § 3. О законах формальной логики
- § 4. Формальные символические языки
- § 5. Синтаксис и семантика
- Глава 3. Аксиоматико-дедуктивный и гипотетико-дедуктивный
- § 1. Аксиоматико-дедуктивный метод научного познания
- § 2. Гипотетико-дедуктивный метод научного познания
- Глава 4. Метод моделирования
- § 1. Модели и пределы
- § 2. Модели и интервал моделируемости
- § 3. О некоторых видах моделей
- Глава 5. Методы научного абстрагирования и идеализации
- § 1. Элиминативная теория абстракции
- § 2. Продуктивная теория абстракции
- Глава 6. Научная теория. Модели научного объяснения
- § 1. Гипотетико-дедуктивная модель научной теории
- § 2. Дедуктивно-номологическая модель научного объяснения
- § 3. Альтернативные модели научного объяснения
- § 4. Альтернативные модели научной теории
- Часть 3. Логико-методологические проблемы
- Глава 1. Методология системного подхода
- § 1. Основные понятия системного подхода
- § 2. Логика целого
- § 3. Виды целых
- § 4. Воплощение целого
- Глава 2. Философия и методология синергетики
- § 1. Феномен синергетики
- § 2. Синергетика и термодинамика
- § 3. Синергетика и теория особенностей
- § 4. Сводка основных понятий синергетики
- § 5. Обобщенный образ синергетической системы
- § 6. Сильная и слабая синергетика
- Глава 3. Методологические принципы
- § 1. Принцип наблюдаемости
- § 2. Принцип дополнительности
- § 3. Принцип соответствия
- § 4. Принцип симметрии
- Глава 4. Принцип детерминизма
- § 1. Дефинитивный детерминизм
- § 2. Жесткий (лапласовский) детерминизм
- § 3. Вероятностный детерминизм
- § 4. Проблема синтеза видов детерминизма
- Часть 4. Модели научного знания
- Глава 1. Логический позитивизм
- § 1. Этап догматического верификационизма
- § 2. Этап вероятностного верификационизма
- Глава 2. Модель науки Карла Поппера
- § 1. Фальсифицируемость как критерий демаркации
- § 2. Конвенционализм в философии Поппера
- § 3. Эволюция научного знания
- Глава 3. Модель науки Имре Лакатоса
- § 1. Доказательства и опровержения
- § 2. Процесс обогащения знания
- § 3. Философия исследовательских программ
- Глава 4. Модель науки Томаса Куна
- Глава 5. Модель науки Пола Фейерабенда
- Глава 6. К итогам развития философии науки
- Часть 5. Научная рациональность и ее типы
- § 1. Понятие рациональности
- § 2. Классическая научная рациональность
- § 3. Неклассическая научная рациональность
- § 4. Витализация образа материи в неклассической рациональности