§ 33. Перейдём к рассмотрению второй фигуры простого категорического силлогизма:
Р-М
S-M
S-P
Вывод по второй фигуре устанавливает, что предметы класса S не могут принадлежать к классу Р, так как они не обладают свойствами, которые принадлежат предметам класса Р и которые удостоверяются в посылках.
Рассмотрим примеры:
Все герои способны подчинять Ни одна звезда не имеет быстрого
личное общественному. видимого движения относительно других светил.
Ни один эгоист не способен подчинять Все планеты имеют быстрое видимое
личное общественному. движение относительно других светил.
Ни один эгоист не есть герой. Ни одна планета не есть звезда.
Примеры эти представляют две разновидности второй фигуры силлогизма. В первом примере большая посылка удостоверяет, что известное свойство М принадлежит всем предметам, входящим в класс Р, а меньшая посылка устанавливает, что предметы класса S не обладают свойством М. Из этого отношения терминов следует вывод, что ни один предмет класса S не может входить в класс предметов Р.
Рис. 62
Во втором примере большая посылка удостоверяет, что ни один предмет класса Р не обладает свойством М, а меньшая посылка устанавливает, что все предметы класса S обладают свойством М. Из этого отношения терминов следует, что ни один предмет класса S не может входить в класс предметов Р (см. рис. 62).
На рисунке изображено отношение между понятиями в обоих наших примерах второй фигуры. Из рисунка видно, что в обоих примерах вывод приводит к исключению класса предметов S из класса предметов Р и наоборот.
Но это исключение объёма одного понятия из объёма другого возможно только потому, что, как видно из посылок, существенные признаки обоих понятий, образующие их содержание, оказались несовместимыми.
В первом случае (1) большая посылка удостоверяет, что все существенные признаки понятия М входят как часть в число существенных признаков понятия Р и потому весь объём Р оказывается частью объёма М. Меньшая посылка удостоверяет, что существенные признаки понятия S несовместимы о существенными признаками понятия М. Но так как все существенные признаки понятия М входят в число существенных признаков понятия Р, то, будучи несовместимыми с существенными признаками М, существенные признаки S и подавно несовместимы с существенными признаками Р. А отсюда следует, что весь объём S находится вне всего объёма Р.
Во втором случае (2) большая посылка удостоверяет, что существенные признаки понятия Р несовместимы с существенными признаками понятия М и потому весь объём Р находится вне всего объёма М. Меньшая посылка удостоверяет, что все существенные признаки понятия М входят как часть в число существенных признаков понятия S и потому весь объём S есть часть объёма М. Но так как все существенные признаки М входят в число существенных признаков S, то, будучи несовместимы с существенными признаками М, существенные признаки Р будут несовместимы также и с существенными признаками S. А это значит, что весь объём S будет вне всего объёма Р.
Общим для обоих примеров является то, что в них вывод состоит в исключении предмета из класса на основании установленного посылками отличия свойств предмета от свойств класса.
§ 34. Этим значением второй фигуры определяются её особые правила. Согласно первому из них, бо;´льшая посылка должна быть суждением общим. И действительно, исключить предмет S из класса предметов Р, основываясь при этом на свойствах предмета S, можно лишь при условии, если все предметы класса Р обладают свойством, противоположным свойству предмета S. Чтобы исключить класс планет из класса звёзд, основываясь на свойстве планет иметь быстрое видимое движение относительно других светил, необходимо знать, что все звёзды обладают противоположным свойству планет свойством: не имеют быстрого видимого движения относительно других светил. Чтобы исключить класс эгоистов из класса героев, основываясь на неспособности эгоистов подчинять личное общественному, необходимо знать, что все герои обладают противоположным свойству эгоистов свойством: способны подчинять личное общественному.
§ 35. Согласно второму специальному для второй фигуры правилу, одна из посылок должна быть отрицательной. При отсутствии отрицательной посылки, посредством которой выясняется несовместимость свойства предмета и свойств предметов класса, не будет достаточного основания для исключения предмета из класса. Но какая именно из посылок – большая или меньшая – должна быть отрицательной, правило не указывает. Так, в нашем первом примере отрицательна меньшая посылка, большая же утвердительна. Во втором примере, наоборот, отрицательна большая посылка, меньшая же утвердительна. И действительно, исключение предмета из класса может основываться как на том, что предмет S не обладает свойством М, необходимо принадлежащим всем предметам класса Р, так и на том, что ни один предмет класса Р не обладает свойством М, необходимо принадлежащим предмету S. В первом случае отрицательной будет меньшая посылка, во втором случае – большая.
По второй фигуре могут быть получены только отрицательные выводы. Черта эта следует из основного назначения второй фигуры, состоящего в том, что в выводе предмет S исключается из класса предметов Р.
Отрицательные выводы могут быть получены не только по второй фигуре. Выше мы уже убедились, что из четырёх возможных правильных модусов первой фигуры два (Celarent и Ferio) также дают отрицательные выводы: общеотрицательный и частноотрицательный. С другой стороны, в дальнейшем мы убедимся в том, что и по третьей фигуре возможны отрицательные выводы.
Особенность второй фигуры, отличающая её от остальных, вовсе не в том, что только одна вторая фигура способна давать отрицательные выводы. Особенность второй фигуры состоит, во-первых, в том, что по второй фигуре невозможны никакие другие выводы, кроме отрицательных. Отрицательный вывод –не просто один из возможных для силлогизма второй фигуры случаев. Отрицательный вывод есть основная цель всякого силлогизма второй фигуры. Задача этой фигуры в том и состоит, чтобы, установив несовместимость существенных признаков понятий S и Р, показать, что объёмы этих понятий исключают друг друга.
Поэтому отрицание, выражаемое модусами второй фигуры, отличается от отрицания, выражаемого модусами, например, первой фигуры. В этом отличии – другая особенность второй фигуры. И действительно, в отрицательных модусах первой фигуры отрицательный вывод получается как отрицательный ответ на вопрос о принадлежности класса S к классу Р. Но самый вопрос при этом имеет не отрицательный, а положительный смысл: нас интересует именно принадлежность S к Р; модусы Barbara и Darii выясняют, что отношение этой принадлежности имеет место, модусы Celarent и Ferio,–что отношения этой принадлежности нет налицо.
Напротив, во всех без исключения модусах второй фигуры задачей вывода является именно доказательство несовместимости существенных признаков понятий S и Р, а следовательно, раздельности объёмов этих понятий. Здесь (разумеется, если вывод обоснован) не может быть и речи об утвердительном результате: вывод может быть только отрицательный.
Таким образом, различие между отрицательными модусами первой фигуры и отрицательными модусами второй фигуры выражает различие нашего интереса. В одних случаях нас интересует положительный результат, и отрицание является лишь обнаружением того, что в данном случае положительный результат, каким бы желательным он ни был, всё же невозможен. Так обстоит дело с отрицательными модусами первой фигуры.
В других случаях нас, напротив, интересует отрицательный результат, и вопрос идёт лишь об условиях и о полноте самого отрицания. Так обстоит дело со всеми модусами второй фигуры.
§ 36. Оба специальные правила второй фигуры могут быть выведены и из правил, общих для всех фигур силлогизма. Правило, по которому одна из посылок должна быть отрицательной, легко выводится из условий распределённости терминов. Если бы обе посылки были утвердительные, то средний термин оказался бы как предикат утвердительного суждения, выражающего подчинение понятия S понятию Р, в обеих посылках нераспределённым, и вывод был бы невозможен.
Правило, по которому большая посылка не может быть частной, также следует из условий распределённости терминов. И действительно, согласно первому специальному правилу второй фигуры, одна из посылок в этой фигуре должна быть отрицательной. Это значит, что и вывод, по шестому общему для всех силлогизмов правилу, будет отрицательный. Но в отрицательных выводах больший термин (как предикат отрицательного суждения) всегда распределён. Будучи распределённым в выводе, больший термин, согласно четвёртому общему правилу, должен быть распределён и в большей посылке. По условиям второй фигуры больший термин в большей посылке есть субъект. Но термин субъекта распределён только в общих суждениях. Итак, большая посылка не может быть частной.
§ 37. Все возможные правильные модусы второй фигуры устанавливаются тем же способом, что и модусы первой фигуры. Исключив из шестнадцати арифметически возможных модусов все модусы, противоречащие общим правилам всех фигур и особым правилам второй фигуры, получаем четыре правильных модуса второй фигуры: ЕА, АЕ, ЕI, АО.
В модусе ЕА вывод, как легко показать из условий распределённости терминов, будет общеотрицательный (Е), и всё строение модуса может быть обозначено ЕАЕ.
Пример: «Ни один жир не растворяется в воде, все спирты растворяются в воде; следовательно, ни один спирт не есть жир».
В модусе ЕА вывод получается также общеотрицательный (Е), и всё строение модуса может быть обозначено АЕЕ.
Пример: «Все насекомые – трахейнодышащие, ни один паук – не трахейнодышащий; следовательно, ни один паук не есть насекомое».
В модусе EI вывод получается частноотрицательный (О), и всё строение модуса может быть обозначено ЕIO.
Пример: «Ни одно растение, имеющее корневище, не бывает однолетним, некоторые фиалковые имеют корневище; следовательно, некоторые фиалковые – не однолетние растения».
В модусе АО вывод получается также частноотрицательный (О), и всё строение модуса может быть обозначено АОО.
Пример: «Все раскалённые твёрдые тела дают непрерывный спектр, некоторые туманности не дают непрерывного спектра; следовательно, некоторые туманности не суть раскалённые твёрдые тела».
Условные названия модусов второй фигуры:
Cesare, Camestres, Festino, Baroco.
Сравнивая выводы, возможные по второй фигуре, видим, что все они действительно могут быть только отрицательными: общеотрицательными или частноотрицательными.
Отсюда не следует, однако, что отрицательные выводы, единственно возможные по второй фигуре, не имеют ценности для знания.
Уже было показано, что модусы второй фигуры применяются в тех случаях, когда предметом нашего интереса является именно отрицание, а не утверждение. Но такие случаи не редки. И в практической деятельности и в деятельности научного познания наш интерес направлен к выяснению не только того, что соединяет, но и того, что разделяет. Установление различия, неоднородности, несовместимости часто представляет величайший интерес как практический, так и теоретический.
С другой стороны, отрицательные выводы, мало интересные сами по себе, в ряде случаев могут быть использованы как средство, подготовляющее положительное решение вопроса. Многие сложные задачи решаются путём последовательного исключения тех случаев, в которых искомое решение не может быть найдено, пока, наконец, не доходят до единственно оставшегося случая, представляющего положительное решение. В исследованиях такого рода исключение совершается на основе отрицательных выводов по второй фигуре. Допустим, что, исследуя какое-либо газообразное вещество, мы зададимся вопросом, не находится ли в составе этого вещества натрий. Зная, что спектр газообразных веществ, заключающих в своём составе натрий, имеет характерную яркожёлтую линию, и установив, что исследуемое вещество не даёт в спектре этой линии, заключаем по второй фигуре (модус Camestrеs), что в исследуемом веществе натрий отсутствует.
Другой пример. Если мы знаем, что в данной смеси могут быть только некоторые из веществ m, k, n, I, р, но не знаем, какие именно, то один из способов решения вопроса состоит в том, что, установив на основе отрицательных выводов по второй фигуре невозможность присутствия, например, веществ k, 1, р, мы приходим к выводу, что в состав смеси входят m и n.
- Isbn 5-354-00006-8
- Предисловие
- Глава I. Предмет и задача логики Логика как наука о правильном мышлении
- § 4. Так как только определённое мышление есть мышление логичное, то отсюда следует, что всякое мышление, чтобы быть логичным, должно удовлетворять условиям определенности.
- Понятие о логической форме
- Глава II. Логические законы мышления Логические законы как законы определённого, последовательного и доказательного мышления
- Закон тождества
- Закон противоречия
- § 14. Всякое нарушение закона противоречия ведёт к тому, что между нашими высказываниями возникают неувязки, нарушается необходимая логическая связь.
- § 15. Закон противоречия в разъяснённом выше его смысле справедлив относительно всех противоположных друг другу высказываний, независимо от вида самой противоположности.
- Закон достаточного основания
- § 26. Так же, как и рассмотренные уже логические законы мышления, закон достаточного основания может быть выражен общей формулой, а именно: «если есть в, то есть как его основание – а».
- Глава III. Учение о понятии Связь понятия с суждением
- § 6. В каждой мысли необходимо отличать логический состав мысли от его грамматического выражения.
- § 7. Так как речь служит нам для выражения наших мыслей и развилась из потребности выражения мысли, то, вообще говоря, строение предложения и строение суждения соответствуют друг другу.
- Признаки предмета и признаки понятия
- § 10. В каждом суждении наша мысль может выделить понятия, при помощи которых мыслятся субъект, предикат и отношение.
- Существенные признаки
- Содержание и объём понятия
- Классы понятий и отношение между понятиями
- § 18. С точки зрения реального существования предметов понятий все понятия делятся на: 1) конкретные и 2) абстрактные, или отвлечённые.
- § 19. С точки зрения количества предметов, мыслимых посредством понятий, все понятия делятся на 1) общие, 2) единичные и 3) собирательные.
- § 25. И класс совместимых понятий и класс понятий несовместимых в свою очередь заключают в себе каждый дальнейшие подразделения.
- § 28. Родовое понятие, будучи более широким, чем видовое, по объёму, заключает в своём содержании, меньшее сравнительно с видовым понятием количество признаков.
- Глава IV. Логические действия над понятиями Представление и понятие
- Определение понятия
- Генетическое определение
- Ограничение понятия
- Обобщение понятия
- Разделение понятия
- § 19. Из всех возможных ошибок деления самой значительной является ошибка, состоящая в отступлении от принятого при делении основания.
- Дихотомия
- § 21. Существует приём деления, свободный от ошибок, встречающихся при других способах деления. Называется этот приём «дихотомией», т. Е. Делением надвое.
- Глава V. Суждение и его состав. Виды суждений Состав суждения. Субъект и предикат
- § 1. В логическом мышлении понятие обычно встречается не само по себе, но в составе суждения в связи с другими понятиями, входящими в суждение.
- § 2. В главе о понятии мы уже познакомились с членами суждения – с «субъектом» и «предикатом». Рассмотрим подробнее их логическую функцию в суждении и возможные виды отношений между ними.
- § 3. Хотя субъект суждения всегда есть мысль о каком-то предмете, но субъект суждения и самый предмет суждения не одно и то же.
- Основные логические типы суждений
- Суждение как форма выражения истины
- § 10. Высказывание может иметь в мышлении самое различное назначение. Высказывание может выражать чувство («я люблю музыку Бородина»), желание («я хочу написать письмо отцу») и т. Д.
- Качество суждения
- § 19. Кроме общих и частных суждений с точки зрения количества различаются также ещё единичные суждения.
- § 22. Но и независимо от возможности перехода частного суждения в общее всяким общим суждением предполагаются суждения частные и единичные. И это справедливо даже относительно суждений математики.
- Модальность суждений
- Глава VI. Субъект и предикат суждения. Распределенность терминов Отношение между субъектом и предикатом суждения
- Отношение между объемами субъекта и предиката в суждениях о принадлежности предмета классу предметов
- Распределённость субъекта и предиката в суждении
- § 16. Из рассмотренного примера видно, что в одном и том же суждении один термин может оказаться распределённым, другой – нераспределённым.
- Распределённость субъекта и предиката в суждениях о принадлежности предмета классу предметов
- § 24. В частноотрицательных суждениях (о) о принадлежности предмета классу предметов субъект не распределён, но предикат распределён.
- Глава VII. Установление точного логического смысла суждений. Преобразования формы суждений Установление точного логического смысла суждений
- Обращение
- § 13. На чём основывается логическая операция обращения? Что даёт нам право поменять местами предикат и субъект суждения?
- Превращение
- § 21. Второй вид преобразования формы суждений, не изменяющего содержания суждений, составляет превращение.
- Глава VIII. Сопоставление суждений Виды сопоставляемых суждений
- Противопоставление суждений по противоположности
- § 4. При противопоставлении противоположных суждений возможны следующие три случая:
- Противоречащие суждения
- § 5. Отношения противоречащей противоположности определяются следующими правилами:
- Контрарные суждения
- § 6. Контрарные суждения не могут быть оба вместе истинными. Правило это, общее для обоих видов противоположных суждений, основывается на законе противоречия.
- Подконтрарные суждения
- Сопоставление суждений по подчинению
- «Логический квадрат»
- § 12. Расположив знаки качества и количества суждений по вершинам квадрата, легко замечаем, что боковые стороны квадрата ai и ео наглядно представляют отношения подчинения.
- Глава IX. Умозаключения Определение умозаключения
- Деление умозаключений на силлогистические и несиллогистические
- § 7. В практике логического мышления встречаются различные виды умозаключений. Чтобы распределить умозаключения по видам, необходимо исходить из анализа посылок, т.Е. Суждений.
- Простой категорический силлогизм
- Все лягушки - амфибии. S – m
- § 11. Рассмотрим теперь другой пример силлогизма:
- § 12. Рассмотрим третий пример силлогизма:
- § 13. Чтобы выяснить роль каждой фигуры, т. Е. Характер выводов, которые могут быть получены посредством этой фигуры, необходимо познакомиться с разновидностями фигур, или модусами.
- Правила распределённости терминов в посылках и выводах силлогизма
- § 17. Третье общее правило формулируется так: чтобы вывод был возможен, средний термин (м ) должен быть распределен по крайней мере в одной из посылок.
- Правила, определяющие связь между качеством и количеством посылок и выводов силлогизма
- § 20. Шестое общее правило формулируется так: если вывод из данных посылок вообще возможен и если одна из посылок при этом отрицательная, то вывод также будет отрицательный.
- § 25. Из сказанного видно, что различные по качеству и количеству силлогистические выводы требуют различных условий распределённости терминов в посылках.
- Первая фигура и её особые правила
- Вторая фигура и её особые правила
- § 33. Перейдём к рассмотрению второй фигуры простого категорического силлогизма:
- Логический ход умозаключения в силлогизмах первой и второй фигур
- § 38. Логический ход умозаключения в силлогизмах второй фигуры существенно отличается от хода умозаключений в силлогизмах первой фигуры.
- Третья фигура и её особые правила
- § 39. Третья фигура простого категорического силлогизма:
- Логический ход умозаключения по третьей фигуре
- Четвёртая фигура и её особые правила
- Сведение всех фигур простого категорического силлогизма в первой фигуре
- § 45. Существует более сложный способ сведения. Способ этот применяется при сведении некоторых выводов, по второй и по третьей фигуре к выводу по первой.
- Все планеты обращаются вокруг солнца, м – р
- Аксиома силлогизма и две еe формулы
- Условия истинности силлогистических выводов
- Логические ошибки, встречающиеся в силлогизмах
- § 52. Некоторые из логических ошибок неправильного вывода, особенно часто встречающиеся в практике мышления, заслуживают быть особо отмеченными.
- § 53. Вторая встречающаяся в практике силлогистических выводов ошибка состоит в том, что делают вывод по второй фигуре из двух утвердительных посылок.
- Глава X. Виды силлогизмов Условный силлогизм
- § 1. Кроме простых категорических силлогизмов существуют ещё условные и разделительные силлогизмы.
- § 2. В условном силлогизме по крайней мере одна из посылок – условная. Что касается другой посылки, то она может быть либо условной, либо категорической.
- § 6. Условно-категорический силлогизм в свою очередь имеет две разновидности, иди два модуса.
- § 7. Второй модус условно-категорического силлогизма представляет иной ход мысли.
- Ошибки, возможные в условно-категорическом силлогизме
- § 9. Другой вид логической ошибки, возможной в условно-категорическом силлогизме, возникает в случае, когда пытаются заключать от истинности следствия к истинности основания.
- § 10. В некоторых случаях может сложиться впечатление, будто правильный вывод от истинности следствия к истинности основания всё же возможен.
- Простой разделительный силлогизм
- Дилемма
- Разделительно-категорический силлогизм
- § 16. Другой модус разделительно-категорического силлогизма противоположен предыдущему. Вот его пример:
- Ошибки, возможные в разделительно-категорическом силлогизме
- § 17. Модус tollendo ponens и модус ponendo tollens – два единственных модуса разделительно-категорического силлогизма, по которым может быть получен правильный вывод.
- Сокращённые силлогизмы
- Эпихейрема
- Сложные силлогизмы
- § 24. Сорит применяется в случаях, когда необходимо последовательно обозреть длинную цепь звеньев подчинения.
- Глава XI. Несиллогистические умозаключения. Индукция и её виды Несиллогистические умозаключения
- Несиллогистические индуктивные умозаключения
- § 6. Первая и наиболее резко бросающаяся в глаза черта, отличающая индуктивные умозаключения от силлогизмов, состоит в том, что посредством индукции из частных посылок могут получаться общие выводы.
- § 8. Напротив, в индуктивных умозаключениях даже из достоверных посылок далеко не всегда могут быть получены достоверные выводы.
- Полная индукция
- Неполная индукция
- Неполная индукция через простое перечисление
- Неполная индукция через отбор, исключающий случайности обобщения
- § 21. В индуктивных выводах этого рода обобщение, так же как и в случае неполной индукции через простое перечисление, делается на основе только некоторой части фактов известного рода.
- Неполная индукция Бэкона
- Пять основных видов или методов бэконовской индукции
- 1. Метод сходства
- § 30. Так как одно и то же действие может, вообще говоря, вызываться различными причинами, то метод сходства даёт не окончательно достоверное, но лишь вероятное заключение о причине явления.
- 2. Метод различия
- 3. Соединённый метод сходства и различия
- § 38. Мы рассмотрели метод сходства и метод различия каждый в отдельности. Но при исследовании причинной связи явлений эти методы иногда применяются вместе.
- § 39. Схема соединённого метода сходства и различия
- 4. Метод остатков
- 5. Метод сопутствующих изменений
- § 46. Напротив, между выводом по методу остатков и выводом по методу сопутствующих изменений имеется важное различие.
- Логические ошибки, возможные в индуктивных выводах
- § 48. При использовании всех рассмотренных индуктивных методов возможны, как и во всех действиях мышления, логические ошибки.
- Глава XII. Индукция и дедукция Логическое основание и логическая формула выводов о вероятности
- § 1. Рассмотренные в предыдущей главе формы индуктивных умозаключений в некоторых отношениях образуют группы выводов, отличных от силлогистических выводов.
- § 5. Так обстоит дело, если сравнивать дедуктивные и индуктивные выводы с точки зрения логического процесса, или логического обоснования вывода.
- § 8. Наконец, и в третьем отношении – в отношении цели или задачи умозаключения – противоположность между индукцией и дедукцией также не может быть признана безусловной.
- Оценка вероятности индуктивных умозаключений
- § 15. Из сравнения индуктивных выводов с дедуктивными было выведено, что, кроме полной индукции, дающей достоверные заключения, все остальные виды индукции дают заключения вероятные.
- Глава XIII. Гипотетические умозаключения, или гипотезы. Умозаключения по аналогии Построение гипотез и их превращение в достоверную истину
- § 5. В отличие от всех этих форм вывода гипотетический вывод, так же как и вывод по второй фигуре простого категорического силлогизма, исходит из сравнения не субъектов, а предикатов посылок.
- § 6. Но можем ли мы считать достоверным, что предположенная нами причина действительно есть основание для субъекта всех этих предикатов?
- § 12. Второй случай превращения гипотезы в достоверную истину , есть случай, когда положение, составляющее содержание гипотезы, выводится как следствие из достоверных посылок.
- Главнейшие логические типы гипотез
- Аналогия
- § 26. Почему же в одних случаях аналогия оказывается истинной, а в других – ложной?
- Глава XIV. Доказательство и его строение. Виды доказательств Доказательство
- § 5. Этим различием между выводом и доказательством определяется строение доказательства.
- Главнейшие виды доказательств
- Доказательства по существу
- Генетические доказательства
- § 20. Мы уже знаем, что вторую группу доказательств после доказательств по существу составляют так называемые генетические доказательства, или доказательства по источнику происхождения.
- § 21. Генетические доказательства, как всякие доказательства, представляют либо установление истинности тезиса (его оправдание), либо обнаружение его ложности (его опровержение).
- Роль практики и опыта в доказательствах
- § 27. Это различие между науками математическими и науками эмпирическими, т. Е. Доказывающими свои положения на основе прямого обращения к опыту, порождает различив в видах доказательства.
- Опровержение
- Основания как части доказательств
- § 33. Все исходные основания являются либо определениями основных понятий данной науки, либо её аксиомами.
- § 35. В отличие от определения, которое только устанавливает содержание понятия, аксиома есть утверждение, которое рассматривается в данной науке как заведомо истинное, хотя оно нигде не доказывается.
- § 37. Но аксиомы даже не являются положениями безусловно очевидными.
- Ошибки относительно доказываемого тезиса
- Ошибки в основаниях доказательства
- § 45. Ошибки второго вида, возможные в доказательствах, вытекают из ошибок в основаниях. Есть три главные разновидности этих ошибок.
- § 50. Мы рассмотрели группу ошибок заведомо ложного основания и группу ошибок сомнительного (недоказанного) основания с их главными разновидностями.
- Ошибки в аргументации, посредством которой доказывается тезис
- § 55. Другим источником ошибки утверждения терминов являются синонимы. Так называются различные словесные выражения одной и той же мысли.
- И, наконец, почему мы видим, что многие вещи
- Содержание
- Глава X. Виды силлогизмов 121
- Глава XI. Несиллогистические умозаключения. Индукция и её виды 138
- Глава XII. Индукция и дедукция 169
- Глава XIII. Гипотетические умозаключения, или гипотезы. Умозаключения по аналогии 182
- Глава XIV. Доказательство и его строение. Виды доказательств 197