§ 28. Родовое понятие, будучи более широким, чем видовое, по объёму, заключает в своём содержании, меньшее сравнительно с видовым понятием количество признаков.
В каждом понятии, если оно подлинно научное понятие, предусматриваются все частные случаи, какие могут быть из него выведены и из каких составляется полное содержание понятия. Всякое научное понятие образуется по правилу, зная которое мы можем последовательно охватить все частные случаи, какие может представить его содержание.
Например, понятие «треугольник» есть понятие о фигуре, образованной пересечением трёх прямых линий, лежащих в одной плоскости. В содержании этого понятия предусматриваются как возможные все существенные признаки всех частных видов треугольников – и остроугольных, и прямоугольных, и тупоугольных.
Но из всех этих признаков, характеризующих частные случаи, или виды, треугольника и составляющих содержание понятия «треугольник», ни один не отмечается в определении понятия «треугольник».
Происходит это вовсе не потому, что признаки эти ни в каком отношении не принадлежат содержанию родового понятия «треугольник».
Происходит это потому, что указывать в определении частные признаки необходимо лишь в особых случаях, когда мы хотим отличить один вид треугольника от другого, например, прямоугольный треугольник от остроугольного или тупоугольного.
Именно поэтому в определение содержания понятия «прямоугольный треугольник» кроме общих для всех треугольников признаков – фигуры, образованной пересечением трёх прямых линий, лежащих в одной плоскости, – вводится новый дополнительный признак – наличие среди внутренних углов треугольника одного прямого угла.
Если, выясняя содержание более общего родового понятия («треугольник»), мы не отмечаем при этом признаков, входящих в содержание видового понятия («прямоугольный треугольник»), то это не потому, что видовые признаки не могут мыслиться, как принадлежащие содержанию более общего понятия, а потому, что, несмотря на предусмотренную наличность их в составе содержания, нет необходимости отмечать все эти признаки в определении понятия.
И действительно, определение треугольника имеет задачей не указать или перечислить все возможные частные случаи или разновидности треугольников, а отличить любой треугольник – будь он остроугольный, прямоугольный или тупоугольный – от любой другой фигуры (квадрата, трапеции, шестиугольника и т. д.).
§ 29. Чем более обще понятие, чем меньше часть содержания, выраженная в определении понятия, тем более признаков и связей признаков предусматривается в тон части его содержания, которая осталась не выраженной в определении. Понятие «треугольник» предусматривает возможность мыслить, кроме тех признаков, которые мыслятся в содержании понятия остроугольного треугольника, также и признаки, мыслимые в содержании понятий прямоугольного и тупоугольного треугольников. Именно потому, что треугольники могут быть не только остроугольными, но также прямоугольными и тупоугольными, все признаки, составляющие содержание понятий о всех этих видах треугольников, могут принадлежать к содержанию понятия «треугольник».
Но хотя, таким образом, в содержании общего понятия заключаются все частные содержания, все частные случаи и все особые признаки, которые могут быть развиты из этого содержания или в нём обнаружены, эти частные случаи и признаки не указываются в определении более общего понятия, не отмечаются непосредственно в его содержании.
Они не отмечаются не потому, что отсутствуют в самом содержании понятия, а потому, что из всего возможного состава содержания в определение вводятся только те признаки, которые необходимы и достаточны, чтобы отличить данный предмет (или класс предметов) от всех других. Такими – необходимыми и достаточными – в случае определения содержания более общего понятия будут менее специальные, не видовые признаки.
Именно в этом смысле и говорят, что в понятиях, стоящих друг к другу в отношении рода и вида, объём и содержание находятся между собой в обратном отношении: большему объёму соответствует меньшее содержание и, наоборот, большему содержанию – меньший объём.
По существу отношение это означает здесь отношение той части признаков, которая непосредственно указывается или отмечается в определении понятия, ко всей совокупности признаков, которые входят в содержание понятия и в нём предусматриваются, но не указываются при определении его содержания.
§ 30. Третий вид совместимости понятий – перекрещивание. Так называется отношение понятий, в содержании которых имеются признаки различные, но могущие принадлежать предмету в различных отношениях и потому не исключающие возможность частичного совпадения объёмов понятий. Таковы понятия «живописец» и «скульптор». Содержания обоих этих понятий состоят из признаков, не имеющих между собой необходимой связи. Живописец не должен быть непременно в то же время и скульптором, а скульптор–живописцем. Но могут существовать лица, удовлетворяющие одновременно признакам каждого из этих понятий. Следовательно, объёмы этих двух понятий в какой-то части своей могут совпадать. И действительно: некоторые скульпторы, например Микель-Анджело, были в то же время живописцами, а некоторые живописцы, например Ренуар, – скульпторами.
Отношение между объёмами перекрещивающихся понятий изображается посредством взаимно пересекающихся кругов (см. рис. 6).
Рис. 6
Из этого рисунка видно, что совпадение объёмов перекрещивающихся понятий возможно не для всего объёма понятий А и В, но лишь для некоторой части их объёмов (не все живописцы, а только часть живописцев были вместе и скульпторами. Точки, лежащие вне заштрихованной и общей для А и В части их объёмов, означают понятия, признаки которых настолько различны, что не допускают совпадения их объёмов.
§ 31. Равнозначимость, подчинение и перекрещивание – разновидности совместимых понятий. В свою очередь и несовместимые понятия также бывают различных видов: 1) противоречащие, 2) противоположные и 3) соподчиненные.
Рассмотрим сначала противоречащие понятия. Так называются два таких понятия, из которых одно имеет в своём содержании известную группу признаков, а другое не заключает в своём содержании ничего, кроме одного только отрицания этих признаков. Таковы понятия «целое число» и «не-целое число». Первое из них (понятие «целое число») имеет в своём содержании известную совокупность положительных признаков. Напротив, второе из них (понятие «не-целое число») означает: любое число, кроме целого, но какое именно, каковы его признаки, – об этом в содержании понятия «не-целое число» не имеется никаких указаний.
Другие примеры противоречащих понятий: «аккуратный» – «не - аккуратный», «доблестный» – «не-доблестный» в т. п.
Отношение между объёмами двух противоречащих понятий изображено на рис. 7.
В – не А
Рис. 7
Здесь положительно определённое понятие, например понятие «белый» обозначено посредством круга А. Противоречащее ему понятие В – «не-белый», содержание которого состоит в отрицании содержания А, обозначено посредством неопределённо простирающейся вокруг А плоскости В, не замкнутой никаким кругом. Этот способ изображения должен показывать, что под не-А может, вообще говоря, мыслиться всё, что угодно, кроме того, что составляет содержание понятия А.
Однако в действительности, мысля противоречащее понятие, мы не просто противопоставляем отрицаемому содержанию А какое угодно не-А. Мы противопоставляем «белому» но просто «всё не-белое», но противопоставляем ему какой-то другой цвет. Но это значит, что даже в случае противоречия двух понятий друг другу противоречие состоит не в том, что мы просто отрицаем известное содержание, а в том, что отрицаемому содержанию мы противополагаем какое-то другое, также положительное содержание, относящееся к общему для А и для В (не-А) роду. Но каким именно будет это другое содержание того же рода, – это остаётся неопределённым.
§ 32. Противоположными, или контрарными, называются два таких несовместимых понятия, из которых в содержании одного не только отрицаются признаки другого, но и замещаются другими – несовместимыми с ним признаками. Таковы понятия «хороший» и «плохой». В содержании «плохой» не только имеются признаки, отрицающие содержание понятия «хороший», но, кроме того, отрицаемые признаки замещаются другими – несовместимыми, однако вполне положительными признаками, относящимися к общему с отрицаемым понятием роду качества.
Отношение между объёмами двух противоположных понятий А и В , например между объёмами понятий «хороший» и «плохой», изображено на рис. 8.
хороший А В плохой
Рис. 8
Рисунок этот показывает, что оба противоположные понятия принадлежат к одному и тому же роду С, в данном случае – к роду качества, поэтому и А и В находятся внутри общего им круга. Иными словами, содержание понятия В так же положительно, как в содержание контрарного ему понятия А.
Вместе с тем рисунок этот показывает, что между понятиями, составляющими крайнюю противоположность (контрактность), А и В могут быть понятия, образующие переход от А к В. Например, между крайними противоположностями хорошего и плохого существует «посредственный», через многочисленные степени которого можно последовательно и непрерывно перейти от плохого к хорошему и обратно.
§ 33. Различие противоречащих е противоположных понятий в некоторых случаях становится трудно уловимым. В русском языке многие слова, перед которыми стоит отрицание «не», могут означать не только простое отрицание положительных признаков, но также и некоторое противоположное качество, характеризуемое своими особыми положительными признаками.
Так, слово «не добрый» может означать и простое отрицание доброты, без замены отрицательного понятия понятием другого качества, и в то же время может означать то же, что слово «злой», т. е. некоторое другое качество, не только исключающее качество доброты, но вместе с тем обладающее и своими особыми положительными признаками. Какую противоположность – противоречащую или контрарную – выражает слово с отрицанием – об этом можно судить не по самому этому слову, отдельно взятому, а по всему смыслу речи в целом или, как говорят, «по контексту» речи.
В русском языке имеется отрицательная частица «без», которая, будучи поставлена в начале слова, показывает, что понятие, обозначаемое словом с этой частицей, есть понятие не противоречащее, а противоположное.
Так, слово «не умный» может означать и простое отрицание ума (тогда оно будет понятием противоречащим по отношению к понятию «умный») и может быть равносильно слову «глупый» (тогда оно будет понятием противоположным, или контрарным, по отношению к понятию «умный»). Какое из этих двух значений выражает слово «не умный», не видно из самого этого слова и может быть выяснено только из контекста.
Напротив, слово «безумный» обозначает понятие, о котором сразу можно сказать, что оно будет противоположным относительно понятия «умный», т. е. будет обозначать хотя и противоположное понятию «умный», но вполне определённое содержание.
§ 34. Несовместимые понятия могут быть разделены ещё и по степени общности. Два или несколько понятий называются соподчиненными, когда, будучи одинаково общими, они подчинены родовому понятию, ближайшему к ним по степени общности. Так, понятия «пушка», «гаубица», «мортира» будут соподчинены общему для них понятию «артиллерийское орудие». При этом понятие «артиллерийское орудие» есть понятие, ближайшее по степени общности в отношении к соподчинённым ему понятиям «пушки», «гаубицы» и «мортиры».
Отношение между объёмами соподчинённых понятий изображается посредством большого круга, внутри которого целиком помещаются, не касаясь друг друга и не перекрещиваясь между собой, два или несколько малых кругов. При этом большой круг изображает объём подчиняющего понятия, малые круги, помещённые внутри большого, изображают объёмы понятий, соподчиненных первому. Отсутствие совпадения или перекрещивания между малыми кругами, помещёнными внутри большого, показывает, что объёмы соподчинённых понятий несовместимы и что в содержании соподчиненных понятий имеются различающие их признаки.
Вторым примером отношения между соподчинёнными понятиями может быть отношение между понятиями «остроугольный треугольник», «прямоугольный треугольник» и «тупоугольный треугольник». На рис. 9 показано это отношение.
Рис. 9
Здесь большой круг А изображает объём подчиняющего понятия «треугольник». Малые круги В, С и D изображают отношения между объёмами соподчиненных понятию «треугольник» понятий «остроугольный треугольник», «прямоугольный треугольник», «тупоугольный треугольник».
Все эти три несовместимых между собой понятия подчинены одному в тому же и общему для всех них понятию «треугольник». Поэтому о всех этих трёх понятиях можно сказать, что они соподчинены понятию «треугольник».
§ 35. Несравнимые понятия называются также диспаратными. Таковы, например, понятия «длина» и «блеск». Объёмы этих понятий не могут быть включены как объёмы соподчинённых понятий в объём подчиняющего их себе понятия.
§ 36. В предыдущих параграфах мы рассмотрели главнейшие виды понятий и познакомились с отношениями между ними по содержанию и по объёму. Все рассмотренные виды сравнимых понятий могут быть наглядно представлены посредством изображённой схемы (см. рис. 10).
ЗАДАЧИ
1. Укажите существенные признаки понятий: «круг», «дробь», «часы», «химическая реакция», «птица», «роман», «вдохновение», «храбрость», «мужество», «отвага», «смелость».
2. Определите отношение между следующими понятиями по содержанию и по объему; «ученый», «профессор», «паук», «насекомое»; «основатель Петербурга», «победитель шведов при Полтаве», «лев», «тигр», «пантера»; «ель», «сосна», «пихта», «кедр»; «круг», «эллипс», «парабола», «гипербола»; «поэзия», «музыка», «живопись», «скульптура»; «гвардеец», «орденоносец»; «трудный», «не-трудный»; «трудный», «легкий»; «отважный», «робкий»; «краснота», «тяжесть»; «храбрость», «осторожность»; «талант», «трудолюбие»; «личный», «безличный»; «химия», «органическая химия»; «химия», «естествознание»; «флот», «эскадра»; «логарифм», «добродушие».
3. Изобразите посредством круговых схем отношение между объёмами понятий: «слава», «бесславие»; «стихи», «проза»; «яд», «лекарство»; «дрова», «торф», «уголь»; «хитрость», «глупость»; «труд», «праздность»; «масло», «акварель», «пастель», «карандаш»; «смычковый инструмент», «скрипка»; «планета», «светило»; «звезда», «планета»; «свежий», «не-свежий»; «свежий», «тухлый»; «тюлень», «млекопитающее»; «физик», «химик», «естествоиспытатель»; «стахановец», «литейщик»; «круг», «прямая, касающаяся круга в данной точке»,
- Isbn 5-354-00006-8
- Предисловие
- Глава I. Предмет и задача логики Логика как наука о правильном мышлении
- § 4. Так как только определённое мышление есть мышление логичное, то отсюда следует, что всякое мышление, чтобы быть логичным, должно удовлетворять условиям определенности.
- Понятие о логической форме
- Глава II. Логические законы мышления Логические законы как законы определённого, последовательного и доказательного мышления
- Закон тождества
- Закон противоречия
- § 14. Всякое нарушение закона противоречия ведёт к тому, что между нашими высказываниями возникают неувязки, нарушается необходимая логическая связь.
- § 15. Закон противоречия в разъяснённом выше его смысле справедлив относительно всех противоположных друг другу высказываний, независимо от вида самой противоположности.
- Закон достаточного основания
- § 26. Так же, как и рассмотренные уже логические законы мышления, закон достаточного основания может быть выражен общей формулой, а именно: «если есть в, то есть как его основание – а».
- Глава III. Учение о понятии Связь понятия с суждением
- § 6. В каждой мысли необходимо отличать логический состав мысли от его грамматического выражения.
- § 7. Так как речь служит нам для выражения наших мыслей и развилась из потребности выражения мысли, то, вообще говоря, строение предложения и строение суждения соответствуют друг другу.
- Признаки предмета и признаки понятия
- § 10. В каждом суждении наша мысль может выделить понятия, при помощи которых мыслятся субъект, предикат и отношение.
- Существенные признаки
- Содержание и объём понятия
- Классы понятий и отношение между понятиями
- § 18. С точки зрения реального существования предметов понятий все понятия делятся на: 1) конкретные и 2) абстрактные, или отвлечённые.
- § 19. С точки зрения количества предметов, мыслимых посредством понятий, все понятия делятся на 1) общие, 2) единичные и 3) собирательные.
- § 25. И класс совместимых понятий и класс понятий несовместимых в свою очередь заключают в себе каждый дальнейшие подразделения.
- § 28. Родовое понятие, будучи более широким, чем видовое, по объёму, заключает в своём содержании, меньшее сравнительно с видовым понятием количество признаков.
- Глава IV. Логические действия над понятиями Представление и понятие
- Определение понятия
- Генетическое определение
- Ограничение понятия
- Обобщение понятия
- Разделение понятия
- § 19. Из всех возможных ошибок деления самой значительной является ошибка, состоящая в отступлении от принятого при делении основания.
- Дихотомия
- § 21. Существует приём деления, свободный от ошибок, встречающихся при других способах деления. Называется этот приём «дихотомией», т. Е. Делением надвое.
- Глава V. Суждение и его состав. Виды суждений Состав суждения. Субъект и предикат
- § 1. В логическом мышлении понятие обычно встречается не само по себе, но в составе суждения в связи с другими понятиями, входящими в суждение.
- § 2. В главе о понятии мы уже познакомились с членами суждения – с «субъектом» и «предикатом». Рассмотрим подробнее их логическую функцию в суждении и возможные виды отношений между ними.
- § 3. Хотя субъект суждения всегда есть мысль о каком-то предмете, но субъект суждения и самый предмет суждения не одно и то же.
- Основные логические типы суждений
- Суждение как форма выражения истины
- § 10. Высказывание может иметь в мышлении самое различное назначение. Высказывание может выражать чувство («я люблю музыку Бородина»), желание («я хочу написать письмо отцу») и т. Д.
- Качество суждения
- § 19. Кроме общих и частных суждений с точки зрения количества различаются также ещё единичные суждения.
- § 22. Но и независимо от возможности перехода частного суждения в общее всяким общим суждением предполагаются суждения частные и единичные. И это справедливо даже относительно суждений математики.
- Модальность суждений
- Глава VI. Субъект и предикат суждения. Распределенность терминов Отношение между субъектом и предикатом суждения
- Отношение между объемами субъекта и предиката в суждениях о принадлежности предмета классу предметов
- Распределённость субъекта и предиката в суждении
- § 16. Из рассмотренного примера видно, что в одном и том же суждении один термин может оказаться распределённым, другой – нераспределённым.
- Распределённость субъекта и предиката в суждениях о принадлежности предмета классу предметов
- § 24. В частноотрицательных суждениях (о) о принадлежности предмета классу предметов субъект не распределён, но предикат распределён.
- Глава VII. Установление точного логического смысла суждений. Преобразования формы суждений Установление точного логического смысла суждений
- Обращение
- § 13. На чём основывается логическая операция обращения? Что даёт нам право поменять местами предикат и субъект суждения?
- Превращение
- § 21. Второй вид преобразования формы суждений, не изменяющего содержания суждений, составляет превращение.
- Глава VIII. Сопоставление суждений Виды сопоставляемых суждений
- Противопоставление суждений по противоположности
- § 4. При противопоставлении противоположных суждений возможны следующие три случая:
- Противоречащие суждения
- § 5. Отношения противоречащей противоположности определяются следующими правилами:
- Контрарные суждения
- § 6. Контрарные суждения не могут быть оба вместе истинными. Правило это, общее для обоих видов противоположных суждений, основывается на законе противоречия.
- Подконтрарные суждения
- Сопоставление суждений по подчинению
- «Логический квадрат»
- § 12. Расположив знаки качества и количества суждений по вершинам квадрата, легко замечаем, что боковые стороны квадрата ai и ео наглядно представляют отношения подчинения.
- Глава IX. Умозаключения Определение умозаключения
- Деление умозаключений на силлогистические и несиллогистические
- § 7. В практике логического мышления встречаются различные виды умозаключений. Чтобы распределить умозаключения по видам, необходимо исходить из анализа посылок, т.Е. Суждений.
- Простой категорический силлогизм
- Все лягушки - амфибии. S – m
- § 11. Рассмотрим теперь другой пример силлогизма:
- § 12. Рассмотрим третий пример силлогизма:
- § 13. Чтобы выяснить роль каждой фигуры, т. Е. Характер выводов, которые могут быть получены посредством этой фигуры, необходимо познакомиться с разновидностями фигур, или модусами.
- Правила распределённости терминов в посылках и выводах силлогизма
- § 17. Третье общее правило формулируется так: чтобы вывод был возможен, средний термин (м ) должен быть распределен по крайней мере в одной из посылок.
- Правила, определяющие связь между качеством и количеством посылок и выводов силлогизма
- § 20. Шестое общее правило формулируется так: если вывод из данных посылок вообще возможен и если одна из посылок при этом отрицательная, то вывод также будет отрицательный.
- § 25. Из сказанного видно, что различные по качеству и количеству силлогистические выводы требуют различных условий распределённости терминов в посылках.
- Первая фигура и её особые правила
- Вторая фигура и её особые правила
- § 33. Перейдём к рассмотрению второй фигуры простого категорического силлогизма:
- Логический ход умозаключения в силлогизмах первой и второй фигур
- § 38. Логический ход умозаключения в силлогизмах второй фигуры существенно отличается от хода умозаключений в силлогизмах первой фигуры.
- Третья фигура и её особые правила
- § 39. Третья фигура простого категорического силлогизма:
- Логический ход умозаключения по третьей фигуре
- Четвёртая фигура и её особые правила
- Сведение всех фигур простого категорического силлогизма в первой фигуре
- § 45. Существует более сложный способ сведения. Способ этот применяется при сведении некоторых выводов, по второй и по третьей фигуре к выводу по первой.
- Все планеты обращаются вокруг солнца, м – р
- Аксиома силлогизма и две еe формулы
- Условия истинности силлогистических выводов
- Логические ошибки, встречающиеся в силлогизмах
- § 52. Некоторые из логических ошибок неправильного вывода, особенно часто встречающиеся в практике мышления, заслуживают быть особо отмеченными.
- § 53. Вторая встречающаяся в практике силлогистических выводов ошибка состоит в том, что делают вывод по второй фигуре из двух утвердительных посылок.
- Глава X. Виды силлогизмов Условный силлогизм
- § 1. Кроме простых категорических силлогизмов существуют ещё условные и разделительные силлогизмы.
- § 2. В условном силлогизме по крайней мере одна из посылок – условная. Что касается другой посылки, то она может быть либо условной, либо категорической.
- § 6. Условно-категорический силлогизм в свою очередь имеет две разновидности, иди два модуса.
- § 7. Второй модус условно-категорического силлогизма представляет иной ход мысли.
- Ошибки, возможные в условно-категорическом силлогизме
- § 9. Другой вид логической ошибки, возможной в условно-категорическом силлогизме, возникает в случае, когда пытаются заключать от истинности следствия к истинности основания.
- § 10. В некоторых случаях может сложиться впечатление, будто правильный вывод от истинности следствия к истинности основания всё же возможен.
- Простой разделительный силлогизм
- Дилемма
- Разделительно-категорический силлогизм
- § 16. Другой модус разделительно-категорического силлогизма противоположен предыдущему. Вот его пример:
- Ошибки, возможные в разделительно-категорическом силлогизме
- § 17. Модус tollendo ponens и модус ponendo tollens – два единственных модуса разделительно-категорического силлогизма, по которым может быть получен правильный вывод.
- Сокращённые силлогизмы
- Эпихейрема
- Сложные силлогизмы
- § 24. Сорит применяется в случаях, когда необходимо последовательно обозреть длинную цепь звеньев подчинения.
- Глава XI. Несиллогистические умозаключения. Индукция и её виды Несиллогистические умозаключения
- Несиллогистические индуктивные умозаключения
- § 6. Первая и наиболее резко бросающаяся в глаза черта, отличающая индуктивные умозаключения от силлогизмов, состоит в том, что посредством индукции из частных посылок могут получаться общие выводы.
- § 8. Напротив, в индуктивных умозаключениях даже из достоверных посылок далеко не всегда могут быть получены достоверные выводы.
- Полная индукция
- Неполная индукция
- Неполная индукция через простое перечисление
- Неполная индукция через отбор, исключающий случайности обобщения
- § 21. В индуктивных выводах этого рода обобщение, так же как и в случае неполной индукции через простое перечисление, делается на основе только некоторой части фактов известного рода.
- Неполная индукция Бэкона
- Пять основных видов или методов бэконовской индукции
- 1. Метод сходства
- § 30. Так как одно и то же действие может, вообще говоря, вызываться различными причинами, то метод сходства даёт не окончательно достоверное, но лишь вероятное заключение о причине явления.
- 2. Метод различия
- 3. Соединённый метод сходства и различия
- § 38. Мы рассмотрели метод сходства и метод различия каждый в отдельности. Но при исследовании причинной связи явлений эти методы иногда применяются вместе.
- § 39. Схема соединённого метода сходства и различия
- 4. Метод остатков
- 5. Метод сопутствующих изменений
- § 46. Напротив, между выводом по методу остатков и выводом по методу сопутствующих изменений имеется важное различие.
- Логические ошибки, возможные в индуктивных выводах
- § 48. При использовании всех рассмотренных индуктивных методов возможны, как и во всех действиях мышления, логические ошибки.
- Глава XII. Индукция и дедукция Логическое основание и логическая формула выводов о вероятности
- § 1. Рассмотренные в предыдущей главе формы индуктивных умозаключений в некоторых отношениях образуют группы выводов, отличных от силлогистических выводов.
- § 5. Так обстоит дело, если сравнивать дедуктивные и индуктивные выводы с точки зрения логического процесса, или логического обоснования вывода.
- § 8. Наконец, и в третьем отношении – в отношении цели или задачи умозаключения – противоположность между индукцией и дедукцией также не может быть признана безусловной.
- Оценка вероятности индуктивных умозаключений
- § 15. Из сравнения индуктивных выводов с дедуктивными было выведено, что, кроме полной индукции, дающей достоверные заключения, все остальные виды индукции дают заключения вероятные.
- Глава XIII. Гипотетические умозаключения, или гипотезы. Умозаключения по аналогии Построение гипотез и их превращение в достоверную истину
- § 5. В отличие от всех этих форм вывода гипотетический вывод, так же как и вывод по второй фигуре простого категорического силлогизма, исходит из сравнения не субъектов, а предикатов посылок.
- § 6. Но можем ли мы считать достоверным, что предположенная нами причина действительно есть основание для субъекта всех этих предикатов?
- § 12. Второй случай превращения гипотезы в достоверную истину , есть случай, когда положение, составляющее содержание гипотезы, выводится как следствие из достоверных посылок.
- Главнейшие логические типы гипотез
- Аналогия
- § 26. Почему же в одних случаях аналогия оказывается истинной, а в других – ложной?
- Глава XIV. Доказательство и его строение. Виды доказательств Доказательство
- § 5. Этим различием между выводом и доказательством определяется строение доказательства.
- Главнейшие виды доказательств
- Доказательства по существу
- Генетические доказательства
- § 20. Мы уже знаем, что вторую группу доказательств после доказательств по существу составляют так называемые генетические доказательства, или доказательства по источнику происхождения.
- § 21. Генетические доказательства, как всякие доказательства, представляют либо установление истинности тезиса (его оправдание), либо обнаружение его ложности (его опровержение).
- Роль практики и опыта в доказательствах
- § 27. Это различие между науками математическими и науками эмпирическими, т. Е. Доказывающими свои положения на основе прямого обращения к опыту, порождает различив в видах доказательства.
- Опровержение
- Основания как части доказательств
- § 33. Все исходные основания являются либо определениями основных понятий данной науки, либо её аксиомами.
- § 35. В отличие от определения, которое только устанавливает содержание понятия, аксиома есть утверждение, которое рассматривается в данной науке как заведомо истинное, хотя оно нигде не доказывается.
- § 37. Но аксиомы даже не являются положениями безусловно очевидными.
- Ошибки относительно доказываемого тезиса
- Ошибки в основаниях доказательства
- § 45. Ошибки второго вида, возможные в доказательствах, вытекают из ошибок в основаниях. Есть три главные разновидности этих ошибок.
- § 50. Мы рассмотрели группу ошибок заведомо ложного основания и группу ошибок сомнительного (недоказанного) основания с их главными разновидностями.
- Ошибки в аргументации, посредством которой доказывается тезис
- § 55. Другим источником ошибки утверждения терминов являются синонимы. Так называются различные словесные выражения одной и той же мысли.
- И, наконец, почему мы видим, что многие вещи
- Содержание
- Глава X. Виды силлогизмов 121
- Глава XI. Несиллогистические умозаключения. Индукция и её виды 138
- Глава XII. Индукция и дедукция 169
- Глава XIII. Гипотетические умозаключения, или гипотезы. Умозаключения по аналогии 182
- Глава XIV. Доказательство и его строение. Виды доказательств 197