26. Правила доказательного рассуждения
Если будет нарушено хотя бы одно из перечисленных ниж< правил, то могут произойти ошибки относительно доказываемого тезиса, ошибки по отношению к аргументам и ошибки в фор ме доказательства.
Правила по отношению к тезису
1. Тезис должен быть логически определенным, ясны” и точным. Иногда люди в своем выступлении, письменном заявлении, научной статье, докладе, лекции не могут четко, ясно однозначно сформулировать тезис. Так, выступающий на собрании не может четко сформулировать основные положения своего выступления и потому веско аргументировать их перед слушателями. И слушатели недоумевают, зачем он выступал в прениях и что хотел им доказать.
2. Тезис должен оставаться тождественным, т. е. одним и тем же, на протяжении всего доказательства или опровержения. Нарушение этого правила ведет к логической ошибке - “подмене тезиса”.
Ошибки относительно доказываемого тезиса
1. “Подмена тезиса”. Тезис должен быть ясно сформулирован и оставаться одним и тем же на протяжении всего доказательства или опровержения - так гласят правила по отношению к тезису. При нарушении их возникает ошибка, называемая “подменой тезиса”. Суть ее в том, что один тезис умышленно или неумышленно подменяют другим и начинают этот новый тезис доказывать или опровергать. Это часто случается во время спора, дискуссии, когда тезис оппонента сначала упрощаю или расширяют его содержание, а затем начинают критиковать Тогда тот, кого критикуют, заявляет, что оппонент “передергивает” его мысли (или слова), приписывает ему то, чего он не говорил. Ситуация эта весьма распространена, она встречается и при защите диссертаций, и при обсуждении опубликованных научных работ, и на различного рода собраниях и заседаниях, и при редактировании научных и литературных статей.
Здесь происходит нарушение закона тождества, так как нетождественные тезисы пытаются отождествлять, что и приводит к логической ошибке.
2. “Довод к человеку”. Ошибка состоит в подмене доказательства самого тезиса ссылками на личные качества того, кто выдвинул этот тезис. Например, вместо того чтобы доказывать ценность и новизну диссертационной работы, говорят, что диссертант - заслуженный человек, он много потрудился над диссертацией и т. д. Разговор классного руководителя с учителем, например русского языка, об оценке, поставленной ученику, иногда сводится не к аргументации, что данный ученик заслужил эту оценку своими знаниями, а к ссылкам на личные качества ученика: добросовестен в учебе, много болел в этой четверти, по всем другим предметам он успевает и т. д.
В научных работах иногда вместо конкретного анализа материала, изучения современных научных данных и результатов практики в подтверждение приводят цитаты из высказываний крупных ученых, видных деятелей и этим ограничиваются, полагая, что одной ссылки на авторитет достаточно. Причем цитаты могут вырываться из контекста и иногда произвольно трактоваться. “Довод к человеку” часто представляет собой просто софистический прием, а не ошибку, допущенную непреднамеренно.
Разновидностью “довода к человеку” является ошибка, называемая “довод к публике”, состоящая в попытке повлиять на чувства людей, чтобы те поверили в истинность выдвинутого тезиса, хотя его и нельзя доказать.
3. .“Переход в другой род”. Имеются две разновидности этой ошибки: а) “кто слишком много доказывает, тот ничего не доказывает”; б) “кто слишком мало доказывает, тот ничего не доказывает”.
В первом случае ошибка возникает тогда, когда вместо одного истинного тезиса пытаются доказать другой, более сильный тезис, и при этом второй тезис может оказаться ложным. Если из а следует b, но из b не следует а, то тезис а является более сильным, чем тезис b. Например, если вместо того чтобы доказывать, что этот человек не начинал первым драку, начинают доказывать что он и не участвовал в драке, то этим ничего не смогут доказать, если этот человек действительно дрался и это видели свидетели.
Ошибка “кто слишком мало доказывает, тот ничего не доказывает” возникает тогда, когда вместо тезиса а мы докажем более слабый тезис b. Например, если, пытаясь доказать, что это животное - зебра, мы доказываем, что оно полосатое, то ничего не докажем, ибо и тигр - тоже полосатое животное.
Правила по отношению к аргументам
1). Аргументы, приводимые для доказательства тезиса, должны быть истинными и не противоречащими друг другу.
2). Аргументы должны быть достаточным основанием для доказательства тезиса.
3). Аргументы должны быть суждениями, истинность которых доказана самостоятельно, независимо от тезиса.
Ошибки в основаниях (аргументах) доказательства
1. Ложность оснований (“основное заблуждение”). В качестве аргументов берутся не истинные, а ложные суждение которые выдают или пытаются выдать за истинные. Ошибка может быть непреднамеренной. Например, до Коперника ученые считали, что Солнце вращается вокруг Земли и, исходя из этого ложного аргумента, строили свои теории. Ошибка может быть и преднамеренной (софизмом) с целью запутать, ввести заблуждение других людей (например, дача ложных показаний свидетелями или обвиняемыми в ходе судебного расследования, неправильное опознание вещей или людей и т. п., из чего затем делаются ложные заключения).
2. “Предвосхищение оснований”. Аргументы не доказаны, а тезис опирается на них. Недоказанные аргументы только предвосхищают, но не доказывают тезис.
3. “Порочный круг”. Ошибка состоит в том, что тезис обосновывается аргументами, а аргументы обосновываются этим жетезисом. Например, К. Маркс вскрыл эту ошибку в рассуждениях
Д. Уэстона, одного из деятелей английского рабочего движения. Маркс пишет: “Итак, мы начинаем с заявления, что стоимость товаров определяется стоимостью труда, а кончаем заявлением, что стоимость труда определяется стоимостью товаров. Таким образом, мы поистине вращаемся в порочном кругу и не приходим ни к какому выводу”'.
Правило по отношению формы обоснования тезиса (демонстрации)
Тезис должен быть заключением, логически следующим из аргументов по общим правилам умозаключений или полученным в соответствии с правилами косвенного доказательства.
Ошибки в форме доказательства
1. Мнимое следование. Если тезис не следует из приводимых в его подтверждение аргументов, то возникает ошибка, называемая “не вытекает”, “не следует”. Люди иногда вместо правильного доказательства соединяют аргументы с тезисом посредством слов “следовательно”, “итак”, “таким образом”, “в итоге имеем” и т. п., полагая, что они установили логическую связь между аргументами и тезисом. Эту логическую ошибку часто неосознанно допускает тот, кто не знаком с правилами логики и полагается только на свой здравый смысл и интуицию. В результате возникает словесная видимость доказательства.
В качестве примера логической ошибки мнимого следования Б. А. Воронцов-Вельяминов в своем учебнике “Астрономия” указал на широко распространенное мнение, что шарообразность Земли якобы доказывается следующими аргументами: 1) при приближении корабля к берегу сначала из-за горизонта показываются верхушки мачт, а потом уже корпус корабля; 2) возможны и осуществлялись кругосветные путешествия и др. Но из этих аргументов следует не то, что Земля имеет форму шара (или, точнее, геоида), а только то, что Земля имеет кривизну поверхности, замкнутость формы. Для доказательства шарообразной формы Земли Б. А. Воронцов-Вельяминов предлагает другие аргументы: а) в любом месте Земли горизонт представляется окружностью, и дальность горизонта всюду одинакова;
6) во время лунного затмения тень Земли, падающая на Луну, всегда имеет округлые очертания, что может быть только в том случае, если Земля шарообразна.
2. От сказанного с условием к сказанному безусловно. Аргумент, истинный только с учетом определенного времени, отношения, меры, нельзя приводить в качестве безусловного, верного во всех случаях. Так, если кофе полезен в небольших дозах (для поднятия артериального давления, например), то в больших дозах он вреден. Аналогично, если мышьяк в небольших дозах добавляют в некоторые лекарства, то в больших дозах он - яд. Лекарства врачи должны подбирать для больных индивидуально. Педагогика требует индивидуального подхода к учащимся. Этика определяет нормы поведения людей, и в различных условиях они могут несколько варьироваться (например, правдивость - положительная черта человека, но если он выдаст тайну врагу, то это будет преступлением).
3. Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии);
а). Ошибки в дедуктивных умозаключениях. Например, в условно-категорическом умозаключении нельзя вывести заключение от утверждения следствия к утверждению основания. Так, из посылок “Если число оканчивается на 0, то оно делится на 5” и “Это число делится на 5” не следует вывод: “Это число оканчивается на 0”. Ошибки в дедуктивных умозаключениях были подробно освещены ранее.
б). Ошибки в индуктивных умозаключениях. “Поспешное обобщение”, например, утверждение, что “все свидетели дают необъективные показания”. Другой ошибкой является “после этого -значит, по причине этого” (например, пропажа вещи обнаружена после пребывания в доме этого человека, значит, он ее унес).
в). Ошибки в умозаключениях по аналогии. Например, африканские пигмеи неправомерно умозаключают по аналогии между чучелом слона и живым слоном. Перед охотой на слона они устраивают ритуальные танцы, изображая эту охоту, копьями протыкают чучело слона, считая (по аналогии), что и охота на живого слона будет удачной, т. е. что им удастся пронзить его копьем.
Этот ритуал ярко описан в книге “Страны и материки”. Приведем отрывки из этого описания: “Охота на слонов требует особых приготовлений. Нужно умилостивить злых духов, получить моральную поддержку всех обитателей деревни... Накануне охоты в деревне разыгрывают настоящий спектакль, в котором охотники, сделав чучело слона и поставив его на поляне, показывают своим сородичам, как они будут охотиться. “Артисты” сначала осторожно двигаются, внимательно прислушиваясь и вглядываясь вперед. Знаками они поддерживают связь друг с другом... Тут вступают в игру барабаны. Они громко бьют, предупреждая, что охотники нашли след...
Внезапно всех как будто пронизывает электрическим током; я вздрагиваю и почти перестаю крутить ручку киноаппарата. Барабаны громыхают: “Бум!” Предводитель резко выпрямляется, машет рукой товарищам и со страхом и ликованием взор устремляет в чучело слона, которое в этот момент всем присутствующим кажется настоящим, живым гигантом... Охотники замирают и несколько секунд, показавшихся мне бесконечно долгими, смотрят на слона. Затем охотники отходят на семь или восемь шагов и начинают взволнованно обсуждать план атаки... Предводитель должен первым поразить слона копьем. Он подкрадывается к слону сзади, но вдруг его глаза расширяются от страха, как будто слон стал поворачиваться, и он стремглав бросается к лесу... Три раза предводитель подкрадывается к слону и три раза убегает прочь... Затем охотники, изобразив преследование раненого слона, бросаются на него, яростно обрушивают копья в чучело и опрокидывают его... Охотники исполняют вокруг поверженного чучела свой победный танец... Через 5 минут под аккомпанемент барабанов пляшут уже все зрители - энергично и весело”',
27. логика и язык
редметом изучения логики являются формы и законы правильного мышления. Мышление есть функция человеческого мозга. Труд способствовал выделению человека из среды животных,
явился фундаментом в возникновении у людей сознания (в том числе мышления) и языка. Мышление неразрывно связано с языком. Язык, по выражению К. Маркса, есть непосредственная действительность мысли. В ходе коллективной трудовой деятельности у людей возникла потребность в общении и передаче своих мыслей друг другу, без чего была невозможна сама организация коллективных трудовых процессов.
Функции естественного языка многочисленны и многогранны. Язык — средство повседневного общения людей, средство общения в научной и практической деятельности. Язык позволяет передавать и получать накопленные знания, практические умения и жизненный опыт от одного поколения к другому, осуществлять процесс обучения и воспитания подрастающего поколения. Языку свойственны и такие функции: хранить информацию, быть средством выражения эмоций, быть средством познания.
Язык является знаковой информационной системой, продуктом духовной деятельности человека. Накопленная информация передается с помощью знаков (слов) языка.
Речь может быть устной или письменной, звуковой или незвуковой (как, например, у глухонемых), речью внешней (для других) или внутренней, речью, выраженной с помощью естественного или искусственного языка. С помощью научного языка, в основе которого лежит естественный язык, сформулированы положения философии, истории, географии, археологии, геологии, медицины (использующей наряду с «живыми» национальными языками и ныне «мертвый» латинский язык) и многих других наук.
Язык — это не только средство общения, но и важнейшая составная часть культуры всякого народа.
На базе естественных языков возникли искусственные языки науки. К ним принадлежат языки математики, символической логики, химии, физики, а также алгоритмические языки программирования для ЭВМ, которые получили широкое применение в современных вычислительных машинах и системах. Языками программирования называются знаковые системы, применяемые для описания процессов решения задач на ЭВМ. В настоящее время усиливается тенденция разработки принципов «общения» человека с ЭВМ на естественном языке, чтобы можно было пользоваться компьютерами без посредников—программистов.
Знак — это материальный предмет (явление, событие), выступающий в качестве представителя некоторого другого предмета, свойства или отношения и используемый для приобретения, хранения, переработки и передачи сообщений (информации, знаний).
Знаки подразделяются на языковые и неязыковые. К неязыковым знакам относятся знаки-копии (например, фотографии, отпечатки пальцев, репродукции и др.), знаки-признаки, или знаки-показатели (например, дым — признак огня, повышенная температура тела — признак болезни), знаки-сигналы (например, звонок — знак начала или окончания занятия), знаки-символы (например, дорожные знаки) и другие виды знаков. Существует особая наука — семиотика, которая является общей теорией знаков. Разновидностями знаков являются языковые знаки. Одна из важнейших функции языковых знаков состоит в обозначении ими предметов. Для обозначения предметов служат имена.
Имя — это слово или словосочетание, обозначающее какой-либо определенный предмет. (Слова «обозначение», «именование», «название» рассматриваются как синонимы.) Предмет здесь понимается в весьма широком смысле: это вещи, свойства, отношения, процессы, явления и т. п. как природы, так и общественной жизни, психической деятельности людей, продуктов их воображения и результатов абстрактного мышления. Итак, имя всегда есть имя некоторого предмета. Хотя предметы изменчивы, текучи, в них сохраняется качественная определенность, которую и обозначает имя данного предмета.
Имена делятся на: 1) простые («книга», «снегирь», «опера») и сложные, или описательные («самый большой водопад в Канаде и США», «планета Солнечной системы»). В простом имени нет частей, имеющих самостоятельный смысл, в сложном они имеются;
2) собственные, т. е. имена отдельных людей, предметов, событий («П. И. Чайковский», «Обь»), и общие (названия класса однородных предметов), например «дом», «действующий вулкан».
Каждое имя имеет значение и смысл. Значением имени является обозначаемый им предмет8.
Смысл (или концепт) имени — это способ, каким имя обозначает предмет, т. е. информация о предмете, которая содержится в имени. Поясним это на примерах. Один и тот же предмет может иметь множество разных имен (синонимов). Так, например, знаковые выражения «4», «2+2», «9—5» являются именами одного и того же предмета: числа 4. Разные выражения, обозначающие один и тот же предмет, имеют одно и то же значение, но разный смысл (т. е. смысл выражений «4», «2+2» и «9 — 5» различен).
Приведем другие примеры, разъясняющие, что такое значение и смысл имени. Такие знаковые выражения, как «великий русский поэт Александр Сергеевич Пушкин (1799—1837)», «автор романа в стихах «Евгений Онегин», «автор стихотворения, обращенного к Анне Петровне Керн, «Я помню чудное мгновенье», «поэт, смертельно раненный на дуэли с Ж. Дантесом», «автор исторической работы «История Пугачева» (1834)», имеют одно и то же значение (они обозначают поэта А. С. Пушкина), но различный смысл.
Такие языковые выражения, как «самое глубокое озеро мира»,
«пресноводное озеро в Восточной Сибири на высоте около 455 метров», «озеро, имеющее свыше 300 притоков и единственный исток — реку Ангару», «озеро, глубина которого 1620 метров», имеют одно и то же значение (озеро Байкал), но различный смысл, поскольку эти языковые выражения представляют озеро Байкал с помощью различных его свойств, т. е. дают различную информацию о Байкале.
Соотношение трех понятий: «имя», «значение», «смысл» — схематически можно изобразить таким образом (рис. 1).
Эта схема пригодна, если имя является не только собственным, т. е. приложимым к одному предмету (число 4, А. С. Пушкин, Байкал), но и общим (например, «человек», «озеро»). Тогда вместо единичного предмета значением имени будет класс однородных предметов (например, класс озер или класс собак и т. д.) и схема останется в силе при данном уточнении, при этом вместо смысла будет содержание понятия.
В логике различают выражения, которые являются именными функциями, и выражения, являющиеся пропозициональными функциями. Примерами первых являются «х2+1», «отец у», «разность чисел z и 5»; примерами вторых являются: «х — поэт», «7+у=10», « х >у—7». Рассмотрим эти два вида функций.
Именная функция — это выражение, которое при замене переменных постоянными превращается в обозначение предмета. Возьмем именную функцию «отец у». Подставив вместо у имя «писатель Жюль Верн», получим «отец писателя Жюля Верна» — имя предмета (в данном случае имя человека).
Именная функция — это такое выражение, которое не является непосредственно именем ни для какого предмета и нуждается в некотором восполнении для того, чтобы стать именем предмета. Так, выражение х2 — 1 не обозначает никакого предмета, но если мы его «восполним», подставив, например, на место х имя числа 3 (обозначающее это число цифру), то получим выражение З2 — 1, которое является уже именем для числа 8, т. е. для некоторого предмета. Аналогично выражение х2 + у2 не обозначает никакого предмета, но при подстановке на место х и у каких-нибудь имен чисел, например «4» и «1», превращается в имя числа 17. Такие нуждающиеся в восполнении выражения, как х2— 1, х2 + у2, и называют функциями: первая — от одного, вторая — от двух аргументов.
Пропозициональной функцией называется выражение, содержащее переменную и превращающееся в истинное или ложное высказывание при подстановке вместо переменной имени предмета из определенной предметной области.
Приведем примеры пропозициональных функций: «z — город»; «х есть космонавт»; «у— четное число»; «х + у = 10»; «х3-1 = 124».
Пропозициональные функции делятся на одноместные, содержащие одну переменную, называемые свойствами (например, «х — композитор», «х—7 = 3», «z — гвоздика»), и содержащие две и более переменных, называемые отношениями (например, «х > у»; «х—z = 16»; «объем куба х равен объему куба у »).
Возьмем в качестве примера пропозициональную функцию «х — нечетное число» и, подставив вместо х число 4, получим высказывание: «4 — нечетное число», которое ложно, а подставив число 5, получим истинное высказывание: «5 — нечетное число».
Разъясним это на некоторых конкретных примерах. Необходимо указать, какие из приведенных выражений являются именными функциями и какие пропозициональными; определить их местность, т. е. число входящих в выражение переменных, и получить из них имена или предложения, выражающие суждения (истинные или ложные):
а) «разность чисел 100 и х». Это именная одноместная функция; например, 100 — 6 есть имя предмета, имя числа 94;
б) «х2+у». Это именная двухместная функция; при подстановке вместо х числа 5 и вместо у числа 7 превращается в имя предмета, имя числа 32;
в) «у — известный полководец». Это пропозициональная одноместная функция; при подстановке вместо у имени «Александр Васильевич Суворов, родившийся 24 ноября 1730 г.» получим истинное суждение: «Александр Васильевич Суворов, родившийся 24 ноября 1730 г., — известный полководец», выраженное в форме повествовательного предложения;
г) «z является композитором, написавшим оперы х и у». Это пропозициональная трехместная функция; превращается в ложное суждение при подстановке вместо z имени «Бизе», вместо х — «Аида», а вместо у — «Травиата», т. е. суждение «Визе является композитором, написавшим оперы «Аида» и «Травиата», выраженное в форме повествовательного предложения.
Понятие пропозициональной функции широко используется в математике. Все уравнения с одним неизвестным, которые школьники решают начиная с первого класса, представляют собой одноместные пропозициональные функции, например х+2=7, 10—х = 4. Неравенства, содержащие одну или несколько переменных, также являются пропозициональными функциями. Например, х<7 или х2—у>0.
Семантические категории
Выражения (слова и словосочетания) естественного языка, имеющие какой-либо самостоятельный смысл, можно разбить на так называемые семантические категории, к которым относятся: 1) предложения: повествовательные, побудительные, вопросительные; 2) выражения, играющие определенную роль в составе предложений: дескриптивные и логические термины9.
Суждения выражаются в форме повествовательных предложений (например, «Киев — город», «Корова — млекопитающее»). В этих суждениях субъектами соответственно являются «Киев», «корова», а предикатами — «город», «млекопитающее».
К дескриптивным (описательным) терминам относятся:
1. Имена предметов — слова или словосочетания, обозначающие единичные (материальные или идеальные) предметы («Аристотель», «первый космонавт», «7») или классы однородных предметов (например, «пароход», «книга», «стихотворение», «засуха», «гвардейский полк» и др.).
В суждении «Енисей — река Сибири» встречаются три имени предмета: «Енисей», «река», «Сибирь». Имя предмета «Енисей» выполняет роль субъекта, а имена «река» и «Сибирь» входят в предикат («река Сибири») как его две составные части.
2 Предикаторы— слова и словосочетания, обозначающие свойства предметов или отношения между предметами (например, «порядочный», «синий», «электропроводный», «есть город», «меньше», «есть число», «есть планета» и др.). Предикаторы бывают одноместные и многоместные. Одноместные предикаторы обозначают свойства (например, «талантливый», «горький», «большой»). Многоместные предикаторы обозначают (выражают) отношения. Двухместными предикаторами являются: «равен», «больше», «мать», «помнит» и др. Например, «Площадь земельного участка А равна площади земельного участка В», «Мария Васильевна — мать Сережи». Пример трехместного предикатора: «между» (например, «Город Москва расположен между городами Санкт-Петербург и Ростов-на-Дону»).
3. Функциональные знаки — выражения, обозначающие предметные функции, операции («ctg α», «+», «V-» и др.).
Кроме того, в языке встречаются так называемые логические термины (логические постоянные, или логические константы).
В естественном языке имеются слова и словосочетания: «и», «или», «если... то», «эквивалентно», «равносильно», «не», «неверно, что», «всякий» («каждый», «все»), «некоторые», «кроме», «только», «тот... который», «ни... ни», «хотя... но», «если и только
если» и многие другие, выражающие логические константы (постоянные).
В символической (или математической) логике в качестве таких констант обычно используются конъюнкция, дизъюнкция, отрицание, импликация, эквиваленция, кванторы общности и существования и некоторые другие.
В символической логике логические термины (логические постоянные) выражаются следующим образом:
Конъюнкция соответствует союзу «и». Конъюнктивное высказывание обозначается , или , или (например, «Закончились лекции (а), и студенты пошли домой (b)») .
Дизъюнкция соответствует союзу «или». Дизъюнктивное суждение обозначается: (нестрогая дизъюнкция) и (строгая дизъюнкция); отличие их в том, что при строгой дизъюнкции сложное суждение истинно только в том случае, когда истинно одно из составляющих суждений, но не оба, а при нестрогой дизъюнкции истинными могут быть одновременно оба суждения. «Он шахматист или футболист» обозначается как «Сейчас
Петров находится дома или в институте» обозначается как
Импликация соответствует союзу «если... то». Условное суждение обозначается: или (например, «Если будет хорошая погода, то мы пойдем в лес»).
Эквиваленция соответствует словам «если и только если»,
«тогда и только тогда, когда», «эквивалентно». Эквивалентное высказывание обозначается , или , или
Отрицание соответствует словам «не», «неверно, что». Отрицание высказывания обозначается (например, «падает снег» (а); «неверно, что падает снег» .
Квантор общности обозначается и соответствует квантовым словам «все» («всякий», «каждый», «ни один»). •— запись в математической логике (например, в суждении «Все красные мухоморы ядовиты» кванторное слово «все»).
Квантор существования обозначается 3 и соответствует словам «некоторые», «существует». —запись в математической логике (например, в суждениях «Некоторые люди имеют высшее образование» или «.Существуют люди, которые имеют высшее образование» кванторные слова выделены курсивом).
- Предмет и значение формальной логики
- Понятие доказательства и его логическая структура.
- Опровержение.Способы опровержения.
- Понятие как форма мышления.
- 6. Основные законы логики.
- 7. Отношения между понятиями и их отображение на круговых схемах
- 8. Гипотеза и следственная версия
- 1. Общая характеристика гипотезы и версии
- 9. 1. Обобщение и ограничение понятий.
- 10. Построение следственных версий
- 11. Операции деления.Правила и ошибки при делении.
- 2. Правила и ошибки при делении понятий
- 12. Операции определения понятий. Правила и ошибки.
- Правила определения и типичные ошибки
- 13. Общая характеристика суждений. Виды и структура простых суждений
- 14. Отношения между суждениями по логическому квадрату
- 15. Сложные суждения и их виды
- 16. Умозаключения как форма мышления
- 17. Категорический силлогизм, его структура. Фигуры и модусы.
- 18. Правила категорического силлогизма
- 19. Виды индуктивных умозаключений.
- 20. Умозаключения по аналогии.
- 21.Логика и другие науки
- 22. Понятие распределенность субъекта и предиката в суждениях
- 23. Разделительные умозаключения
- 24. Основные этапы развития логики
- [Править] Логика в Древнем Китае
- [Править] Индийская логика
- [Править] Европейская и ближневосточная логика
- [Править] Логика античности
- [Править] Логика в Средневековье
- [Править] Логика в эпоху Возрождения и в Новое время
- [Править] Современная логика
- 25. Искусство ведения дискуссии (спора) эристика (от греч. Eristika - искусство спора) - искусство ведения спора
- 26. Правила доказательного рассуждения
- 28. Формы познания
- Основные формы познания
- Вненаучное познание
- A) вненаучное наивное познание
- B) вненаучное теоретическое познание
- 29. Условные умозаключения и их модусы условное умозаключение
- 30.Классификация суждений