logo search

Конструктивная логика

 - одно из направлений современ­ной логики, изучающее рассуждения о конструктивных объек­тах и процессах. Конструктивные объекты представляют собой или отдельные, ясно отличаемые друг от друга знаки, или последова­тельности таких знаков, получаемые посредством некоторого кон­структивного процесса, протекающего по четким дискретным пра­вилам. Примером конструктивного объекта могут служить легко отождествляемые и различаемые буквы к.-л. алфавита; конструк­тивный процесс — построение из них слов по однозначно опреде­ленным правилам. В конструктивном процессе используется аб­стракция потенциальной осуществимости, позволяющая отвлекаться от реальных конструктивных возможностей человека, связанных с ограниченностью его деятельности в пространстве и времени. Можно, напр., рассуждать о сколь угодно длинных, но ко­нечных формулах, которые реально никогда не смогут быть запи­саны. Вместе с тем в таком процессе не используется абстрак­ция актуальной бесконечности, когда невозможность

 

[146]

полного обозрения к.-л. бесконечного образования не учитывает­ся. Бесконечное множество, напр. множество всех натуральных чи­сел, нельзя рассматривать как единый, завершенный объект. Суще­ствование конструктивного объекта считается доказанным лишь в том случае, если указан способ потенциально осуществимого его построения (конструирования).

Ограничение рассуждений конструктивными объектами и про­цессами ведет к отказу от закона исключенного третьего в приме­нении к бесконечным множествам. Отвергаются также закон сня­тия двойного отрицания (см.: Закон двойного отрицания), закон Клавия, некоторые варианты косвенного доказательства и др.

Термином «К. л.» иногда обозначается интуиционистская логи­ка. Чаще под К. л. понимается логическая теория, совпадающая по классу доказуемых формул с интуиционистской логикой, но не обращающаяся к представлению об «изначальной интуиции» и использующая при задании смысла логических операций понятие алгоритма и некоторые особые положения о конструктивных про­цессах (А. А. Марков, Н. А. Шанин и др.).