Логика традиционная, см.: Традиционная логика. Логика эпистемическая(от греч. Episteme - знание)
- раздел модальной логики, исследующий логические связи высказываний, включающих такие понятия, как «полагает» («убежден»), «сомневается», «отвергает», «знает», «доказуемо», «неразрешимо», «опровержимо» т. п.
Знание отличается от убеждения, или веры: знание всегда истинно, убеждение же может быть как истинным, так и ложным. Этому различию соответствует различие между двумя вариантами Л. э.: логикой знания и логикой убеждений. Каждая из этих «логик» слагается из логических систем, различающихся не только законами, но и исходными понятиями. Иногда к Л. э. относят лишь логику убеждений.
Одна из первых логик знания была сформулирована австрийским математиком и логиком К. Гёделем (1906-1978). Исходным
[175]
термином ее является «доказуемо»; в числе ее законов положения:
· >> если высказывание доказуемо, оно истинно (доказать можно только истину, доказательств лжи не существует);
· >> логические следствия доказуемого также являются доказуемыми;
· >> если нечто доказуемо, то доказуемо, что оно доказуемо;
· >> логическое противоречие недоказуемо и т. п.
Другим примером логики знания может служить логика истины, устанавливающая такие законы, как:
· >> если высказывание истинно, то неверно, что его отрицание также истинно («Если истинно, что Земля вращается, то неверно, что истинно, будто она не вращается»);
· >> конъюнкция истинна, если и только если оба входящих в нее высказывания истинны («Истинно, что холодно и идет снег, только если истинно, что холодно, и истинно, что идет снег»), и т. п.
В логике убеждений в качестве исходного обычно принимается понятие «полагает» («убежден», «верит»), через него определяются понятия «сомневается» и «отвергает»:
· >> субъект сомневается в чем-то, если только он не убежден ни в этом, ни в противоположном;
· >> субъект отвергает нечто, если только он убежден в противоположном.
Среди законов логики убежденийположения:
· >> субъект полагает, что первое и второе, если и только если он полагает, что первое, и полагает, что второе («Субъект верит, что Марс - планета и что Луна - планета, только если он верит, что Марс — планета, и верит, что Луна — планета»);
· >> нельзя одновременно верить и сомневаться, быть убежденным и отвергать, сомневаться и отвергать;
· >> субъект или убежден, что дело обстоит так-то, или сомневается в этом, или отвергает это («Субъект или убежден, что Венера — звезда, или сомневается в этом, или отвергает это»);
· >> невозможно быть убежденным одновременно в ч.-л. и в противоположном («Нельзя верить как в то, что астрология наука, так и в то, что она не является наукой») и т. п.
Для понятий «знает», «истинно», «доказуемо» верно, что логические следствия известного также известны, истинного — истинны, доказуемого — доказуемы. Аналогичный принцип для понятия «убежден», кажущийся противоинтуитивным, получил название парадокса логическоговсеведения.Он утверждает, что человек убежден во всех логических следствиях, вытекающих из
[176]
принимаемых им положений. Напр., если человек уверен в пяти постулатах геометрии Евклида, то, значит, принимает и всю эту геометрию, поскольку она вытекает из них. Но это не так. Соглашаясь с постулатами, человек может не знать доказательства теоремы Пифагора и потому сомневаться в том, что она верна.
Л.э. находит интересные приложения в теории познания и в методологии науки, в лингвистике, психологии и др.
ЛОГИСТИКА — в начале XX в. название формальной логики, изучаемой математическими методами, в частности с использованием аксиоматизации и формализации. Слово первоначально означало искусство вычисления или обычную арифметику. Г. Лейбниц употреблял его для обозначения «исчисления умозаключений», которое он пытался развить.
Термин вышел из употребления, уступив место терминам математическая логика, символическая логика или логика современная.
ЛОГИЦИЗМ — концепция, сводящая математику к логике. Согласно Л., логика и математика соотносятся между собой как части одной и той же науки: математика может быть получена из чистой логики без введения дополнительных основных понятий или дополнительных допущений. Под логикой при этом понимается теория дедуктивного рассуждения (см.: Дедукция).
Л. восходит к идее Г. Лейбница (1646—1716) о «сводимости математики к логике». Во второй половине прошлого века немецкий логик Г. Фреге (1848-1925) сформулировал арифметику чисто логически, но, столкнувшись с парадоксами, признал свою попытку безнадежной. В дальнейшем тезис Л. развивали англ. философы и логики Б. Рассел (1872-1970) и А. Уайтхед (1861-1947).
Против идеи, что математические понятия можно свести к логическим понятиям с помощью явных определений и затем вывести математические теоремы из логических аксиом, обычно выдвигаются следующие возражения. Прежде всего, для сведения математики к логике приходится принимать аксиомубесконечности,предполагающую существование бесконечных множеств. Сам Б. Рассел вынужден был признать, что она не является собственно логической. Далее, вывод математики из логики в какой-то степени содержит круг. Всегда имеются необоснованные предпосылки, которые должны быть приняты на веру или интуитивно. Можно попытаться уменьшить их число, но нельзя избавиться от них совсем. Различение, что из этих предпосылок относится к математике, а что - к логике, лежащей в ее основе, носит субъективный и по существу произвольный характер. И наконец, в 1931 г. К. Гёдель показал, что все системы аксиоматически постро-
[177]
енной арифметики существенно неполны: их средствами невозможно доказать некоторые содержательные истинные арифметические утверждения. Основной тезис Л. следует, таким образом, признать опровергнутым.
Это не означает, что Л. был совершенно бесплодным. Его сторонники добились определенных успехов в прояснении основ математики. В частности, было показано, что математический словарь сводится к неожиданно краткому перечню основных понятий, которые принадлежат, как принято считать, словарю чистой логики. Вся существующая математика была сведена к сравнительно простой и унифицированной системе исходных, принимаемых без доказательства положений, или аксиом, и правил вывода из них следствий, или теорем.
Однако в целом Л. оказался утопической концепцией.
ЛОГИЧЕСКАЯ МАШИНА — механическое, электромеханическое или электронно-вычислительное устройство, предназначенное для полуавтоматического или автоматического решения широкого круга математических и логических задач, для управления технологическими и производственными процессами, для оптимальных экономических расчетов, для обработки массивов информации, которые мозг человека не в состоянии охватить, для моделирования форм человеческого мышления.
Попытки создать механические устройства для осуществления арифметических операций уходят в далекую древность. Первую логическую машину построил Раймунд Луллий (1235—1315). Его машина состояла из семи вращающихся вокруг одного центра кругов. На каждом из них были написаны слова, выражающие различные понятия, напр. «человек», «знание», «количество» и т. п., и логические операции, напр. «равенство», «противоречие» и т. п. Вращая круги, можно было получать разнообразные сочетания понятий. С помощью своей машины Луллий получал из заданных посылок силлогистические выводы. В первой половине XVII в. французский математик Б. Паскаль (1623-1662) сконструировал машину для выполнения арифметических операций. Идея машинизации процессов умозаключения была теоретически развита немецким философом и ученым Г. Лейбницем (1646-1716) в работе «Об искусстве комбинаторики». Первой подлинно Л. м. считается «демонстратор» Ч. Стенхопа (1753-1816), с помощью которого проверялись не только традиционные, но и т. наз. «числовые» силлогизмы. «Демонстратор» решал элементарные задачи традиционной логики.
Научные основы для создания современных Л. м. были заложены благодаря развитию математической логики и кибернетики, а
[178]
техническая возможность их создания была обеспечена прогрессом в области электроники и автоматики. В 1944 г. в США была построена автоматическая вычислительная машина «Марк-1», имевшая электромагнитное реле и перфоленту, на которой записывались числа и указывались операции с ними. В 1945 г. Дж. фон Нейман предложил помещать закодированную программу вычислений в запоминающее устройство машины, что значительно расширило диапазон ее возможностей. С середины 50-х годов начали создаваться информационно-логические машины, способные хранить значительные записи информации, выбирать из них необходимые данные и производить не только математическую обработку информации, но и логические операции. Л. м. последующих поколений способны осуществлять миллиарды операций в секунду, различать простые рисунки, самообучаться, понимать простые фразы на естественном языке и решать самые разнообразные задачи во многих областях науки, техники, управления и т. д.
Принципиальная схема Л. м. включает следующие основные компоненты: 1. Входное устройство, преобразующее внешнюю информацию в последовательность электрических импульсов. 2. Выходное устройство, преобразующее электрические сигналы в последовательность воспринимаемых человеком знаков. 3. Запоминающее устройство, хранящее информацию и часто называемое просто «памятью» машины. Различают оперативную память, емкость которой сравнительно невелика, но отличается быстродействием, и долговременную, внешнюю память, с большим объемом, но меньшим быстродействием. 4. Арифметическое устройство, осуществляющее математические и логические действия. 5. Блок управления, обеспечивающий автоматическое выполнение программы, введенной в машину.
Все более широкое использование Л. м. позволяет человеку решать все более сложные задачи, освобождает его от рутинных мыслительных операций и делает человеческий труд все более творческим.
ЛОГИЧЕСКАЯ ПРАВИЛЬНОСТЬ — соответствие законам и правилам формальной логики. Обычно проводят различие между истинностью и правильностью человеческого мышления. Понятие истины характеризует мышление в его отношении к действительности: мысль, предложение истинны, если они соответствуют действительности. Понятие правильности характеризует мышление в его отношении к законам и правилам логики: рассуждение правильно, если в нем соблюдены все необходимые правила логики.
[179]
Различие между истинностью и правильностью отчетливо проявляется в тех случаях, когда формально правильное рассуждение приводит к ложному выводу. Напр., рассмотрим умозаключение:
Все металлы — твердые тела. Ртуть не является твердым телом.
Ртуть не является металлом.
Это умозаключение построено в форме простого категорического силлогизма, причем оно отвечает соответствующим правилам, т. е. правильно. Однако вывод является ложным. Это обусловлено ложностью первой посылки. Если рассуждение построено неправильно, то даже из истинных посылок мы можем получить как истину, так и ложь. Напр.:
Все тигры — полосаты.
Это животное - полосато.
Это животное — тигр.
Выводное суждение может быть как истинным, так и ложным, в зависимости от того, кто перед нами — полосатый тигр или полосатая зебра. Для того чтобы выводное знание было безусловно истинным, требуется, чтобы наше рассуждение опиралось на истинные посылки и было правильным. Правильность рассуждений можно контролировать, гораздо сложнее устанавливается истинность знания. Ученые прошлого часто приходили к ложным выводам не потому, что рассуждали неправильно, а потому, что посылки их были ложными.
ЛОГИЧЕСКАЯ ФОРМА — способ связи содержательных частей рассуждения (доказательства, вывода и т. п.). В соответствии с основным принципом логики, правильность рассуждения зависит только от его формы и не зависит от его конкретного содержания. Само название «формальная логика» подчеркивает, что эта логика интересуется только формой рассуждения. Л. ф. представляется посредством логических констант и переменных. Логические константы, подобные «и», «или», «если, то» и т. д., не имеют самостоятельного содержания, но с их помощью из одних содержательных выражений могут быть получены новые содержательные выражения. Переменные, входящие в Л. ф., представляют выражения, обладающие самостоятельным содержанием: высказывания, имена (см.: Символы собственные и несобственные).
Напр., высказывания «Все лошади едят овес» и «Все реки впадают в море» различны по своему содержанию, причем первое истинно, а второе ложно. Отвлекаясь от содержания высказыва-
[180]
ний, можно заменить их части переменными S и Р. Получим, что данные высказывания имеют одну и ту же логическую форму: «Все S есть Р». Содержательно разные высказывания «Если есть огонь, то есть дым» и «Если математика - наука, то она устанавливает законы» также имеют одинаковую логическую форму: «Если А, то В».
Следующие два вывода, различающиеся своим содержанием, совпадают по своей логической форме: «Если сейчас день, то светло. Сейчас день. Следовательно, светло» и «Если 13 - простое число, оно делится только на себя и на единицу. 13 - простое число. Следовательно, 13 делится только на себя на и на единицу». Заменив высказывания, входящие в данные выводы, переменными, получаем, что в обоих случаях рассуждение идет по одной и той же схеме: «Если А, то В. А. Следовательно, В». Это — схема правильного рассуждения: какие бы конкретные высказывания ни подставлялись вместо A и В, если посылки истинны, заключение также будет истинным (см.: Логическая правильность).
Различие между Л. ф. и содержанием не является абсолютным. То, что в одном случае считается относящимся к форме, в другом может оказаться содержательным компонентом рассуждения, и наоборот.
Интерес логики к Л. ф. не означает отвлечение ее от всякого содержания. Сама Л. ф. обладает определенным абстрактным содержанием, его иногда называют «формальным», чтобы отличить от «конкретного содержания». Скажем, форма «Все S есть Р» указывает, что у всякого предмета, обозначаемого буквой S, есть признак, обозначаемый буквой Р.
Понятие Л. ф. является центральным в логике. С ним связаны понятия логического закона, правила вывода, логического следования и др.
ЛОГИЧЕСКИЕ КОНСТАНТЫ, или: Логические постоянные, — термины, относящиеся к логической форме рассуждения (доказательства, вывода) и являющиеся средством передачи человеческих мыслей и выводов, заключений в любой области. К Л. к. относятся такие слова, как «не», «и», «или», «есть», «каждый», «некоторый» и т. п. Л. к. не имеют самостоятельного содержания. Сами по себе они ничего не описывают и ничего не обозначают. Вместе с тем они позволяют из одних содержательных выражений получать другие. Установление точного смысла Л. к. и выяснение самых общих законов, относящихся к ним, — одна из основных задач логики (см.: Логическая форма, Символы собственные и несобственные, Символика логическая).
ЛОГИЧЕСКИЕ ОПЕРАЦИИ - операции, посредством которых из простых высказываний образуются сложные, из простых тер-
[181]
минов — сложные, из высказываний — термины, из терминов — высказывания и т. д.
К Л. о., позволяющим из одних высказываний получать другие высказывания, относятся конъюнкция («и», символически &), дизъюнкция («или», v), импликация («если, то», ->), эквивалентность («если и только если», =), отрицание («неверно, что», ~) и др. Так, если даны два произвольных высказывания A и В, из них с помощью конъюнкции получается сложное высказывание A & В, которое истинно, только когда A и B истинны; с помощью дизъюнкции получается сложное высказывание A v В, истинное, когда хотя бы одно из входящих в него высказываний истинно, и т. п. (см.: Логика высказываний).
ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ АВТОМАТИКИ - устройства, реализующие некоторые простые логические функции и функциональные преобразования в машинах, самостоятельно работающих по заданной программе. Наиболее распространенным логическим элементом, применяемым в схемах управления автоматических устройств, является электромеханическое реле, реагирующее на определенные значения и изменения величин к.-л. параметра. Напряжение на его катушке является входным сигналом, состояние контактов реле (замкнутость или разомкнутость) — выходным сигналом.
Логические элементы являются одной из важнейших частей электронно-вычислительных машин. Они подразделяются на элементы, реализующие логическое отрицание, — схема «НЕ»; элементы, реализующие логическую конъюнкцию, — схема «И»; элементы, реализующие логическую дизъюнкцию, — схема «ИЛИ», и элементы, реализующие комбинированные логические операции. В сущности смысл работы логических элементов заключается в том, чтобы пропускать или не пропускать сигнал по той или иной цели, усиливать поступивший сигнал или не усиливать и т. п. Набор логических элементов позволяет электронно-вычислительной машине осуществлять преобразования информации в соответствии с преобразованиями формул в алгебре логики.
ЛОГИЧЕСКИЙ АНАЛИЗ - применение средств математической логики для обсуждения и решения философских и методологических проблем. Выражение проблемы в формальном языке придает ей точность и определенную ясность, что иногда способно облегчить поиск ее решения. При этом часто оказывается, что формальное выражение проблемы не вполне адекватно ее содержательному пониманию. Тогда мы пытаемся улучшить это выражение и сделать его более адекватным. Одновременно происхо-
[182]
дит и более глубокое содержательное уяснение анализируемой проблемы. Напр., когда А. Тарский строит точное формальное определение понятия истины, он применяет понятие истины к предложениям. Это дает повод поставить вопрос о том, чему мы приписываем понятие истины — предложениям или суждениям. Обсуждение этого вопроса позволяет более глубоко понять природу суждения и предложения.
Основы метода Л. а. были заложены в трудах немецкого математика и логика Г. Фреге и англ. логика и философа Б. Рассела. Однако широкое распространение он получил в трудах представителей логического позитивизма, которые провозгласили, что основной задачей философии является Л. а. языка науки. Несмотря на значительные успехи в решении отдельных проблем, достигнутые Р. Карнапом, К. Гемпелем, К. Рейхенбахом и др., представители логического позитивизма в общем не смогли использовать все эвристические возможности метода Л. а., т. к. в силу своих гносеологических установок ограничивали базис этого метода средствами экстенсиональной логики. В настоящее время метод Л. а. часто используется на различных этапах философско-методологического исследования: для более четкой постановки проблем, для выявления скрытых допущений той или иной точки зрения, для уточнения и сопоставления конкурирующих концепций, для их более строгого и систематического изложения и т. п. Следует лишь помнить об ограниченности этого метода и опасностях, связанных с его применением. Точность выражений, к которым приводит метод Л. а., часто сопровождается обеднением содержания. Простота и ясность формального выражения некоторой проблемы иногда может порождать иллюзию решения там, где еще требуются дальнейшие исследования и дискуссии. Трудности формального представления и заботы о его адекватности могут увести нас от обсуждений собственно философской или методологической проблемы и заставить заниматься техническими вопросами, лишенными философского смысла. Между прочим, так и случилось со многими методологическими проблемами логического позитивизма. Если же помнить об этом и рассматривать формальное выражение философско-методологической проблемы не как конечный результат, а как вспомогательное средство более глубокого философского анализа, как некоторый промежуточный этап в ходе философского исследования, то такие формальные выражения иногда могут оказаться полезными (см.: Логика научного познания). ЛОГИЧЕСКИЙ ЗАКОН, или: Закон л о г и к и, - выражение, содержащее только логические константы и переменные и явля-
[183]
ющееся истинным в любой (непустой) предметной области. Примером Л. з. может служить любой закон логики высказываний (скажем, непротиворечия закон, закон исключенного третьего, закон де Моргана, закон косвенного доказательства и т. п.) или логики предикатов.
Л. з. принято называть также (логической) тавтологией. В общем случае логическая тавтология — выражение, остающееся истинным, независимо от того, о каких объектах идет речь, или «всегда» истинное выражение. Напр., в выражение «Неверно, что р и не-р», представляющее непротиворечия закон, вместо переменной р должны подставляться высказывания. Все результаты таких подстановок («Неверно, что 11 - простое число и вместе с тем не является простым» и т. п.) являются истинными высказываниями. В выражение «Если для всех х верно, что х есть Р, то не существует х, не являющийся Р», представляющее закон логики предикатов, вместо переменной х должно подставляться имя объекта из любой (непустой) предметной области, а вместо переменной Р — некоторое свойство.
Все результаты таких подстановок представляют собой истинные высказывания («Если для всех людей верно, что они смертны, то не существует бессмертного человека», «Если каждый металл пластичен, то нет непластичных металлов» и т. п.).
Понятие Л. з. непосредственно связано с понятием логического следования: заключение логически следует из принятых посылок, если оно связано с ними логическим законом. Напр., из посылок «Если р, то q» и «Если q, то r» логически следует заключение «Если р, то r», поскольку выражение «Если (если р, то q, и если q, то r), то (если р, то r)» представляет собой транзитивности закон (скажем, из посылок «Если человек отец, то он родитель» и «Если человек родитель, то он отец или мать» по этому закону логически вытекает следствие «Если человек отец, то он отец или мать»).
Современная логика исследует логические законы только как элементы систем таких законов. Каждая из логических систем содержит бесконечное множество Л. з. и представляет собой абстрактную знаковую модель, дающую описание какого-то определенного фрагмента, или типа, рассуждений. Напр., бесконечное множество систем, обладающих существенной общностью и объединяемых в рамках модальной логики, распадается на эпистемическую логику, деонтическую логику, оценок логику, логику времени и др.
В современной логике построены логические системы, не содержащие закона непротиворечия (паранепротиворечивая логика),
[184]
закона исключенного третьего, закона косвенного доказательства (интуиционистская логика) и т. д.
ЛОГИЧЕСКИЙ КВАДРАТ (квадрат противоположностей) - диаграмма, служащая для мнемонического запоминания некоторых логических соотношений между общеутвердительными (A), общеотрицательными (Е), частноутвердительными (I) и частноотрицательными суждениями (О). Логический квадрат показан на рисунке. Противоречащие, контрадикторные суждения (А и О; Е и I) не могут быть одновременно истинными и ложными: если одно из них истинно, то другое ложно. Так, если суждение «Все металлы являются электропроводными» (A) истинно, то суждение «Некоторые металлы не являются электропроводными» ложно. Если суждение «Некоторые металлы не являются твердыми» (О) истинно, то суждение «Все металлы являются твердыми» (А) ложно.
Противные суждения (A и Е), в отличие от противоречащих, могут оба оказаться ложными, но не могут быть оба истинными. Так, суждения «Все студенты являются шахматистами» (A) и «Ни один студент не является шахматистом» (Е) оба ложны. При истинности же одного из них второе является ложным. Так, если суждение «Все кенгуру являются млекопитающими» (A) истинно, то суждение «Ни один кенгуру не является млекопитающим» (Е) ложно. Подпротивные суждения (I и О) не могут быть одновременно ложными. Так, если суждение «Некоторые металлы не являются электропроводными» (О) ложно, то суждение «Некоторые металлы являются электропроводными» (I) (т. е. «Существуют металлы, которые электропроводны») является истинным. Подпротивные суждения могут оказаться и оба истинными. Таковы суждения «Некоторые металлы являются твердыми» (O)
и «Некоторые металлы не являются твердыми» (О).
Суждения, находящиеся в отношении подчинения (A, I и Е, О), отличаются, напр., тем важным свойством, что при истинности общих суждений соответствующие им частные также являются истинными. Так, истинность суждения «Все газы являются сжимаемыми» (A) влечет истинность подчиненного ему суждения (I) «Некоторые газы являются сжимаемыми».
[185]
ЛОГИЧЕСКИЙ ПОЗИТИВИЗМ - основное направление неопозитивизма. Возникло в 20-х годах XX в. под влиянием идей австрийского философа Л. Витгенштейна, который в своем главном произведении раннего периода «Логико-философский трактат» (1921 г., русский перевод 1958 г.) опирался на логическую систему, построенную Б. Расселом и А. Уайтхедом. В исчислении высказываний у нас имеется набор атомарных предложений, обладающих следующими свойствами: 1) каждое атомарное предложение является либо истинным, либо ложным; 2) атомарные предложения независимы друг от друга, т. е. истинность или ложность одного из них никак не влияет на истинность или ложность других атомарных предложений. Из атомарных предложений с помощью логических связок — отрицания, конъюнкции, дизъюнкции, импликации и т. п. — можно строить более сложные, молекулярные предложения, которые, в свою очередь, с помощью тех же связок можно объединять в еще более сложные предложения и т. д. Так возникает иерархия все более сложных молекулярных предложений.
В «Логико-философском трактате» Витгенштейн онтологизирует эту логическую структуру: он представляет мир как совокупность атомарных и молекулярных фактов, построенную точно также, как строится язык исчисления высказываний. Атомарные факты никак не связаны друг с другом, поэтому в мире нет никаких закономерных связей. Если действительность представляет собой лишь комбинации фактов, то наука должна быть комбинацией предложений, отображающих факты и их различные сочетания. Все, что претендует на выход за пределы этого «одномерного» мира фактов, все, что апеллирует к связи фактов или к глубинным сущностям, должно быть изгнано из науки как ненаучная, бессмысленная болтовня. Средством очищения науки от бессмысленных предложений является логический анализ языка науки.
Представители Л. п. развили эти идеи Витгенштейна в гносеологическом направлении. Их теория познания опиралась на следующие принципы.
1. Всякое знание есть знание о том, что дано человеку в чувственном восприятии.
2. То, что дано нам в чувственном восприятии, мы можем знать с абсолютной достоверностью.
3. Все функции знания сводятся к описанию.
Из этих основных принципов теории познания Л. п. вытекают некоторые другие его особенности. Сюда относится прежде всего отрицание традиционной философии, или «метафизики». Философия всегда стремилась сказать что-то о том, что лежит за ощуще-
[186]
ниями, стремилась вырваться из узкого круга субъективных переживаний.
Логический позитивист либо отрицает существование мира вне чувственных переживаний, либо считает, что о нем ничего нельзя сказать. В обоих случаях философия оказывается ненужной. Единственное, в чем она может быть хоть сколько-нибудь полезна, — это анализ научных высказываний. Поэтому философия отождествляется с логическим анализом языка. С отрицанием философии тесно связана терпимость Л. п. к религии. Если все разговоры о том, что представляет собой мир, объявлены бессмысленными, а вы тем не менее хотите говорить об этом, то безразлично, считаете ли вы мир идеальным или материальным, видите в нем воплощение Бога или населяете его демонами, — все это в равной степени не имеет к науке никакого отношения, а является сугубо личным делом каждого.
В основе науки, по мнению логических позитивистов, лежат протокольные предложения, выражающие чувственные переживания субъекта. Истинность этих предложений абсолютно достоверна и несомненна. Совокупность истинных протокольных предложений образует твердый эмпирический базис науки. Для методологии Л. п. характерно резкое разграничение эмпирического и теоретического уровней знания. Однако первоначально логические позитивисты полагали, что все предложения науки — подобно протокольным предложениям— говорят о чувственно данном. Поэтому каждое научное предложение можно свести к протокольным предложениям, подобно тому как любое молекулярное предложение экстенсиональной логики может быть разложено на составляющие его атомарные предложения. Достоверность протокольных предложений передается всем научным предложениям, поэтому наука состоит только из достоверно истинных предложений.
С точки зрения Л. п., деятельность ученого в основном должна сводиться к двум процедурам: 1) установление протокольных предложений; 2) изобретение способов объединения и обобщения этих предложений. Научная теория мыслилась в виде пирамиды, в вершине которой находятся основные понятия, определения и аксиомы; ниже располагаются предложения, выводимые из аксиом; вся пирамида опирается на совокупность протокольных предложений, обобщением которых она является. Прогресс науки выражается в построении таких пирамид и в последующем слиянии небольших пирамидок, построенных в некоторой конкретной области науки, в более крупные пирамиды, которые, в свою очередь, сливаются в
[187]
еще более крупные и т. д. до тех пор, пока все научные теории и области не сольются в одну громадную систему — единую унифицированную науку. В этой примитивно-кумулятивной модели развития не происходит никаких потерь или отступлений: каждое установленное протокольное предложение навечно ложится в фундамент науки; если некоторое предложение обосновано с помощью протокольных предложений, то оно прочно занимает свое место в пирамиде научного знания.
Методологическая концепция Л. п. столкнулась с необходимостью решать многочисленные проблемы, вставшие перед ней в связи с той моделью науки, которую она сконструировала. Попытки решить первоначальные проблемы породили новые проблемы, а решение последующих проблем натолкнулось на новые трудности, и в конце концов методология Л. п. развалилась под грузом тех проблем и трудностей, которые она же и породила. Для сопоставления ее с реальной историей научного познания дело так и не дошло.
Вместе с тем последующее развитие философии науки существенно опиралось на те — как положительные, так и отрицательные — результаты, которые были получены Л. п. в его анализе структуры научного знания, языка науки, различных видов высказываний, входящих в научные теории, логических взаимоотношений между ними и т. д.
ЛОГИЧЕСКИЙ СИНТАКСИС - раздел семиотики, исследующий формальные свойства знаковых систем. Семиотику принято разделять на три части: синтаксис, семантику и прагматику. Синтаксис исследует формальные отношения между знаками. Семантика занимается изучением отношений языка и его выражений к обозначенным объектам и выражаемому ими значению. Прагматика обращает внимание на употребление языковых выражений, на отношения языка к его носителям. Л. с. отличается тем, что исследует синтаксические свойства не естественных, а формальных, логических языков, поэтому его относят обычно не к семиотике, а к металогике.
С точки зрения синтаксиса, формальная система представляет собой набор исходных символов, из которых по определенным правилам могут быть построены разнообразные формулы, из которых выделяется класс правильно построенных формул. Правила построения формул называются правиламиобразования. К ним добавляются правилапреобразования:аксиомы и правила получения одних формул из других. Правила образования и преобразования формул относятся к числу синтаксических правил. Синтаксические свойства формальных систем выражаются в
[188]
таких понятиях, как «доказательство», «непротиворечивость системы аксиом», «полнота», «независимость аксиом» и т. п. В качестве языка, на котором описываются синтаксические свойства формальных систем, используется фрагмент обычного естественного языка. Однако он, в свою очередь, также может быть формализован.
ЛОГИЧЕСКОГО АНАЛИЗА ФИЛОСОФИЯ - течение в современной западной философии, сводящее философию к логическому анализу языка средствами символической логики. Предмет Л. а. ф. — язык науки и формальные языки логики и математики. Возникновение Л. а. ф. связано с интенсивным процессом математизации науки и развитием методов формализации. По сути дела ее нельзя рассматривать как определенное философское направление или философскую систему. Метод логического анализа использовался самыми разными философами — Б. Расселом, Л. Витгенштейном, Р. Карнапом, К. Поппером, А. Папом, У. Куайном и т. д. Основная идея Л. а. ф. заключается в том, что любую осмысленную философскую или методологическую проблему можно решить средствами символической логики. Для этого рассматриваемую проблему нужно формализовать, т. е. описать на формальном логическом языке, а затем, используя логические методы, найти точный ответ. Однако многочисленные попытки решать философские проблемы таким путем показали, что, во-первых, далеко не все философские проблемы могут быть формализованы, а во-вторых, при формализации содержание проблемы настолько обедняется, что их решение формальными средствами оказывается философски неинтересным. В настоящее время даже сторонники метода логического анализа признают, что он может быть лишь вспомогательным средством при обсуждении философских проблем, но отнюдь не средством их решения (см.: Логический анализ, Логический позитивизм).
ЛОГИЧЕСКОЕ ПРОТИВОРЕЧИЕ, см.: Противоречие.
ЛОГИЧЕСКОЕ СЛЕДОВАНИЕ - отношение, существующее между посылками и обоснованно выводимыми из них заключениями. Л.с. относится к числу фундаментальных, исходных понятий логики, точного универсального определения не имеет; в частности, описание его с помощью слов «выводимо», «вытекает» и т. п. содержит неявный круг, поскольку последние являются синонимами слова «следует». Понятие Л. с. обычно характеризуется через связи с другими логическими понятиями, и прежде всего через понятия логического закона и модели.
Из высказывания А логически следует высказывание В, когда импликация «Если A, то В» является частным случаем закона логики. Напр., из высказывания «Если натрий — металл, он пластичен»
[189]
логически вытекает высказывание «Если натрий непластичен, он не металл», поскольку импликация, основанием которой является первое высказывание, а следствием — второе, представляет собой частный случай логического контрапозиции закона.
Иное, семантическое определение логического следования: из посылок A1, ..., Аn логически следует высказывание В, если не может быть так, что высказывания A1, ..., Аn истинны, а высказывание В ложно (т. е. если В истинно в любой модели, в которой истинны A1, ..., Аn).
Отличительной чертой Л. с. является, таким образом, то, что оно ведет от истинных высказываний только к истинным. Если выводы, относимые к обоснованным, дают возможность переходить от истины к лжи, то установление между высказываниями отношения Л.с. теряет всякий смысл, и логический вывод превращается из формы разворачивания и конкретизации знания в средство, стирающее грань между истиной и заблуждением.
В современной логике проблема адекватного описания Л. с. возникла в связи с тем, что логика классическая дает слишком широкое его описание, в ряде моментов не согласующееся с интуитивным представлением о следовании одних высказываний из других. В частности, согласно этой логике, из противоречия логически следует любое высказывание, логически истинное высказывание следует из любого и т. п. (см.: Импликация материальная, Парадоксы импликации).
Усовершенствованные описания Л. с. не содержат правил, позволяющих перейти от истинных посылок к ложному заключению. Они удовлетворяют, кроме того, ряду дополнительных условий. Выдвижение этих условий объясняется стремлением дать такое описание Л. с., при котором существование между высказываниями этого отношения зависело бы не только от истинностного значения высказываний (как в классической логике), но и от их смысловой связи. Поскольку «связь по смыслу» понимается по-разному, существуют различные неклассические теории Л. с. С их помощью решается задача исключения нежелательных, или парадоксальных, правил следования и показано, что нет привилегированной логической системы, являющейся единственно правильным описанием Л. с. Дальнейшая задача формально-логического анализа данного отношения состоит в разработке единой логической теории, взаимосвязанными фрагментами которой оказались бы уже построенные и иные возможные теории Л. с.
ЛОГИЧЕСКОЕ УДАРЕНИЕ — ударение, характеризующее смысловую нагрузку компонентов суждения. В некоторых учениях о суж-
[190]
дении в традиционной логике, принадлежавших психологическому направлению, основная смысловая нагрузка в простых атрибутивных суждениях относилась к предикату суждения: именно в предикате суждения фиксировалась новая информация о предмете. Суждение при этом истолковывалось как некоторый ответ на запрос мысли, выраженный в соответствующем вопросительном предложении (см.: Вопрос). Так, в суждении «Андреев пишет письмо» в зависимости от контекста, т. е. в зависимости от того, на какой вопрос оно отвечает, различные компоненты суждения будут выполнять роль предиката. Если суждение является ответом на вопрос: «Что делает Андреев?», то предикатом будет «пишет письмо». Если же нам известно, что некий человек пишет письмо, и нас интересует, кто пишет письмо, то предикатом будет «Андреев» («Пишущий письмо есть Андреев»).
ЛОГОС (греч. logos) — термин древнегреческой философии, означающий одновременно «слово» (или «предложение», «высказывание», «речь») и «смысл» (или «понятие», «суждение», «основание»). Этот термин был введен в философию Гераклитом (ок. 544 — ок. 483 до н. э.), который называл Л. вечную и всеобщую необходимость, устойчивую закономерность. В последующем развитии человеческой мысли значение этого термина неоднократно изменялось, однако до сих пор, когда говорят о Л., имеют в виду наиболее глубинную, устойчивую и существенную структуру бытия, наиболее существенные закономерности развития мира.
ЛОЖЬ, см. Истинностное значение.
[191]
М
Yandex.RTB R-A-252273-3- Можно сразу проверить наличие шрифта для символов логики Symbol
- Словарь по логике
- 4306010000-112 И———————— Без объявл. 14к(03)-97
- От редакции
- Абсолютизация
- Абсолютные и сравнительные модальности
- Абстрактный предмет(англ. - abstract entity)
- Абстракция(от лат. Abstractio — отвлечение)
- Абсурд(от лат. Absurdus — нелепый, глупый)
- Автомат(от греч. Automatos — самодействующий)
- Автонимное употребление выражений(от греч. Autos-сам, опота — имя)
- Аксиологическая модальность(от греч. Axios - ценный, logos — понятие, учение), или: Оценочная модальность,
- Аксиома(от греч. Axioma — значимое, принятое положение)
- Аксиоматический метод
- Аксиоматическое определение
- Алгебра буля
- Алгоритм (алгорифм)
- Алогизм(от греч. А — не, logos — разум)
- Амфиболия(от греч. Amphibolia — двусмысленность, двойственность)
- Анализ и синтез.А. (от греч. Analysis - разложение)
- Аналитические и синтетические суждения (в логике).
- Аналогия(от греч. Analogia — соответствие)
- Метафора,
- Антецедент и консеквент(от лат. Antecedent - предшествующий, предыдущий и consequens — следствие)
- Антиномия(от греч. Antinomia - противоречие в законе)
- Антиномия рассела
- Антитезис(от греч. Antithesis — противоположение)
- Аподиктический(от греч. Apodeiktikos — доказательный, убедительный)
- Апория(от греч. Aporia — затруднение, недоумение)
- Аргумент(лат. Argumentum)
- Аргументации теория
- Аргументация(от лат. Argumentatio - приведение аргументов)
- Аргументация контекстуальная
- Аргументация теоретическая
- Аргументация эмпирическая
- Аргумент к авторитету(от лат. Ipse dixit - сам сказал)
- Аргумент к аудитории
- Аргумент к жалости
- Аргумент к незнанию, или невежеству,
- Аргумент к силе(«палочный» довод)
- Аргумент к скромности
- Аргумент к тщеславию
- Ассерторический(от лат. Asserto - утверждаю)
- Бессмысленное
- «Бритва оккама»
- Вербальное определение
- Верификация(от лат. Verificatio — доказательство, подтверждение)
- Вероятностная логика
- Вероятность
- Возможность логическая
- Возражение
- Вопросов логика,или: Эротетическая, интеррогативная логика,
- Вывод логический
- Высказывание
- Высказывание дескриптивное(от англ. Description - описание), или: Высказывание описательное,
- Высказывание категорическое
- Высказывание (предложение) контрфактическое(от лат. Contra — против, factum — событие)
- Герменевтика(от греч. Hermeneuo - разъясняю, истолковываю)
- Гёделя теорема
- Гипостазирование(от греч. Hypostasis - сущность, субстанция)
- Гипотеза(от греч. Hipothesis - основание, предположение)
- Гипотетико-дедуктивный метод
- Гипотетическое утверждение
- Гомоморфизм, изоморфизм
- Двойного отрицания закон, см.: Закон двойного отрицания. Двузначная логика
- Двузначности принцип
- Дедукция(от лат. Deductio — выведение)
- Деление логическое
- Денотат(от лат. Denoto — обозначаю), или: Десигнат, предметное значение,
- Деонтическая логика(от греч. Deon — долг, правильность),
- Деонтическая модальность(от греч. Deon - долг, правильность),
- Дескрипция определенная(от лат. Descriptio - описание)
- Диаграммы венна
- Диалектическая логика
- Дизъюнктивный силлогизм, см.: Модус понендо толленс. Модус толлендо поненс. Дизъюнкция (от лат. Disjunctio — разобщение, различение)
- Дилемма(от греч. Di(s) - дважды и lemma - предположение)
- Дискурсивный(от лат. Discursus — рассуждение, довод, аргумент)
- Дискуссия(от лат. Discussio — рассмотрение, исследование)
- Дистрибутивные и коллективные свойства.Д. С.
- Дихотомия(от греч, dicha и tome - рассечение на две части)
- Доказательство
- Доказательство конструктивное, см.: Конструктивная логика. Доказательство от противного, см.: Косвенное доказательство. Доказательство по случаям,или: Доказательство разбором случаев,
- Доказуемость, см.: Доказательство. Дополнение к множеству
- Достаточного основания принцип
- Достаточное условие, см.: Условное высказывание. Достоверность
- Заблуждение
- Закон ассоциативности(от лат. Associatio — соединение)
- Закон гипотетического силлогизма
- Закон двойного отрицания
- Закон де моргана
- Закон дистрибутивности(от англ. Distribution - распределение, размещение)
- Закон дунса скота
- Закон импортации, см.: Закон экспортации — импортации. Закон исключенного третьего
- Закон клавия
- Закон коммутативности(от лат. Commutatio - изменение, перемена)
- Закон коммутации(от лат. Commutatio - изменение, перемена)
- Закон композиции (от лат. Compositio — сочинение, составление)
- Закон косвенного доказательства
- Закон логики, см.: Логический закон. Закон мышления- термин традиционной логики,
- Закон противоречия, см.: Непротиворечия закон. Закон экспортации - импортации(от лат. Exportare -вывозить, importare — ввозить)
- Значение
- Идеализация
- Идемпотентности закон(от лат. Idempotens - сохраняющий ту же степень)
- Иллюстрация(от лат. Illustratio - прояснять)
- Импликация(от лат. Implicatio - сплетение, от implico — тесно связываю)
- Импликация материальная- импликация в трактовке логики классической.
- Индивид (от лат. Individuum - неделимое)
- Индуктивная логика
- Индуктивное определение
- Индукции каноны(от греч. Canon — правило, предписание)
- Метод единственного сходства:
- Метод сопутствующих изменений:
- Метод остатков.
- Индукция(от лат. Inductio - наведение)
- Индукция математическая, полная математическая индукция
- Индукция неполная
- Индукция полная
- Индукция популярная
- Интенсионал и экстенсионал
- Интерпретация(от лат. Interpretatio - разъяснение, истолкование)
- Интерсубъективный(от лат. Inter - между)
- Интуитивная логика
- Интуиционизм
- Интуиционистская логика
- Интуиция(от лат. Intuitio — пристальное, внимательное всматривание, созерцание)
- Иррациональное(от лат. Irrationalis - неразумный, бессознательный)
- Исключенного третьего закон, см.: Закон исключенного третьего. Искусственный интеллект
- Истинностное значение
- Исчисление
- Кавычки
- Категорическое суждение
- Категория(от греч. Kategoria - высказывание, обвинение, признак)
- Каузальная модальность, см.: Онтологическая модальность. Класс, множество (в логике и математике)
- Классификация
- Классическая логика, см.: Логика классическая. Конвенция (от лат. Conventio - соглашение)
- Коннотация (от лат. Connotatio — добавочное значение)
- Конструктивная логика
- Контекст (от лат. Contextus — сцепление, соединение, связь)
- Контекстуальное определение, см.: Определение контекстуальное. Контрадикторная противоположность(от лат. Contradictorius — противоречащий)
- Контрапозиции закон
- Контрарная противоположность (от лат. Contrarius - противоположный)
- Концепт (от лат. Conceptus— понятие)
- Конъюнкция (от лат. Conjunctio - союз, связь)
- Косвенное доказательство
- Круг в доказательстве (лат. — circulus in demonstrando)
- Круг в определении
- Лемма(от греч. Lemma — предположение)
- «Лжеца» парадокс
- Логика (от греч. Logos — слово, понятие, рассуждение, разум), или: Формальная логика,
- Логика времени, или: Временная логика,
- Логика высказываний, или: Пропозициональная логика,
- Логика дедуктивная, см.: Дедукция. Логика изменения
- Логика квантовой механики
- Логика классическая
- Логика классов
- Логика комбинаторная(от лат. Combinare — соединять, сочетать)
- Логика многозначная, см.: Многозначная логика. Логика научного познания, или: Логика науки,
- Логика неклассическая
- Логика норм, см.: Деонтическая логика. Логика отношений
- Логика предикатов, или: Функциональная логика, теория квантификации, кванторная логика,
- Логика традиционная, см.: Традиционная логика. Логика эпистемическая(от греч. Episteme - знание)
- Математическая логика
- Материальная суппозиция, см.: Суппозиция. Метаматематика
- Метатеория(от греч. Meta - после, за, позади)
- Метафора(от греч, metaphora - перенос, образ)
- Метаязык(от греч. Meta - после, за, позади)
- Метод(от греч. Methodos — путь, способ исследования, обучения, изложения)
- Методологическая аргументация
- Методология науки
- Многозначная логика
- Многозначности принцип, см.: Принцип многозначности. Многозначность
- Множеств теория
- Модальная логика
- Модальность(от лат., modus — мера, способ)
- Модель(от лат. Modulus — мера, образец, норма)
- Модель семантическая
- Модус(лат. Modus - мера, способ, образ, вид)
- Модус понендо толленс(лат. Modus ponendo tollens)
- Модус поненс(лат. Modus ponens)
- Модус толлендо поненс(лат. Modus tollendo ponens)
- Модус толленс(лат. Modus tollens)
- Мышление
- «Не вытекает», «не следует» (лат. Поп sequitur)
- «Недоказанное основание» доказательства
- Независимость(в логике и математике)
- Неклассическая логика, см.: Логика неклассическая. Необходимость (логическая)
- Необходимые и достаточные условия (в логике и математике)
- Непосредственное умозаключение (в традиционной логике)
- Неправильное умозаключение, см.: Умозаключение.
- Непредикативное определение
- Непротиворечивость
- Непротиворечия закон
- Несобственные символы, см.: Символы собственные и несобственные.
- Нечеткое множество
- Неясность
- Номологическое высказывание(от греч. Nomos - закон, logos — учение, понятие)
- Норма, см.: Нормативное высказывание.
- Обобщение(лат. Generalisatio)
- Обозначения отношение
- Обоснование
- Обоснование оценок
- Образец
- Обращение(лат. Conversio)
- Общее понятие, см.: Понятие. Общее суждение, см.: Суждение. Объединение (сложение) классов (множеств)
- Объективность
- Объектный (предметный) язык
- Объяснение
- Ограничение понятия
- Омонимия(от греч. Homos — одинаковый, опута — имя)
- Оператор(от лат. Operator — действующий)
- Описание, см.: Высказывание дескриптивное. Описание состояния (англ. State description)
- Описательное высказывание, см.: Высказывание дескриптивное. Описательно-оценочное высказывание, см.: Высказывание дескриптивное,Оценочное высказывание. Определение(лат. Definitio)
- Определение аксиоматическое
- Определение генетическое(от греч. Genesis - происхождение, источник)
- Определение классическое, или: Определение через род и видовое отличие,
- Определение неявное
- Определение номинальное
- Определение операциональное
- Определение остенсивное(от лат. Ostentus - показывание, выставление напоказ)
- Определение реальное
- Определение явное
- Опровержение
- Осмысленность
- Основание и следствие
- Отношение(в логике) отождествляется с многоместным предикатом.
- Отношение включения класса в класс, см.: Множеств теория.
- Отношение типа равенства
- Отношение транзитивное
- Отношение функциональное (однозначное)
- Отрицание
- Отрицательное высказывание, см.: Отрицание. Оценка, см.: Оценочное высказывание. Оценок логика
- Оценочная модальность, см.: Аксиологическая модальность. Оценочное высказывание
- Ошибка логическая
- Парадигма(от греч. Paradeigma — пример, образец)
- Парадокс(греч. Paradoxos)
- Парадоксы импликации
- Паралогизм(от греч. Paralogismos — неправильное, ложное рассуждение)
- Паранепротиворечивая логика
- Переменная
- Пересечение классов (множеств)
- Подменатезиса(лат. Ignoratio elenchi)
- Подтверждение
- Познание
- Полемика
- Полнота(в логике и дедуктивных науках)
- Понимание
- Понятие
- Порочный круг
- «После этого значит по причине этого» (лат. Post hoc ergo propter hoc)
- Поспешное обобщение
- Правило вывода
- Правило локка
- Прагматика
- Правило отделения, см.: Модус поненс. Превращение (лат. Obversio) в традиционной логике
- «Предвосхищение основания»(лат. Petitio principii)
- Предикат(от лат. Praedicatum - сказанное)
- Предложение
- Предметная область, или:Универсум рассуждения, область теории,
- Предпочтений логика
- Предсказание
- Прескриптивное высказывание, см.: Нормативное высказывание. Приведение к абсурду, или: Редукция к абсурду, приведение к нелепости (лат. Reductio ad absurdum),
- Частный закон приведения к абсурду
- Принцип взаимозаменимости
- Принцип многозначности
- Принцип объемности(экстенсиональности) (от лат. Extentio — протяжение)
- Принцип однозначности
- Принцип предметности
- Причинная связь
- Причинности логика
- Проблема(от греч. Problema —преграда, трудность, задача)
- Пропозициональная связка
- Пропозициональная функция
- Противоположность логическая
- Противопоставление предикату
- Противоречие
- Равенство
- Равнозначность(равносильность, эквивалентность)
- Равнообъемность
- Разделительное суждение
- Разделительно-категорическое умозаключение
- Разделительно-условное умозаключение, см.: Дилемма. Разрешающая процедура, см.: Разрешения проблема. Разрешения проблема, или: Разрешимости проблема,
- Разрешимая теория
- Рациональность(от лат. Ratio - разум)
- Рекурсивное определение(от лат. Recurso - возвращаюсь)
- Релевантная импликация, см.: Релевантная логика. Релевантная логика
- Референт(от лат. Refero — называть, обозначать)
- Референция
- Свойство
- Семантика логическая
- Семантическая категория
- Семантические парадоксы, см.: Антиномия. Семантическое понятие истины
- X истинно º р.
- Семиотика
- Силлогизм (от греч. Sillogismos)категорический
- Символ(от греч. Symbolon — знак, опознавательная примета)
- Символика логическая
- Символическая логика
- Символы собственные и несобственные
- Синкатегорематическое выражение, см.: Символы собственные и несобственные. Синонимия
- Синтаксис(греч. Syntaxis — построение, порядок)
- Случайность логическая
- Совместимости условие
- Собирательное понятие, см.: Понятие. Совместимость
- Современная логика
- 1. Методология дедуктивных наук.
- 2. Применение логического анализа к опытному знанию.
- 3. Применение логического анализа к оценочно-нормативному знанию.
- 4. Применение логического анализа в исследовании приемов и операций, постоянно используемых во всех сферах научной деятельности.
- Содержание и форма, см.: Логическая форма. Содержание понятия, см.: Понятие. Сорит(от греч. Soros - куча)
- Дискуссия
- Полемика
- Эклектика
- Софистика
- Сравнительные модальности, см.: Абсолютные и сравнительные модальности. Строгая импликация, см.: Импликация,Парадоксы импликации,Логика. Строгость
- Суждение
- Суппозиция(от лат. Suppositio — подкладывание, подмена)
- Существенный признак, см.: Определение понятия. Сходство
- Тавтология
- Теоретическое и эмпирическое
- Теоретическое мышление
- Теория(от греч. Theoria — наблюдение, рассмотрение, исследование)
- Теория познания
- Термин(от лат. Terminus — граница, предел, конец ч.-л.)
- Термин теоретический
- Термин эмпирический
- Термины силлогизма - элементы суждений, входящих в состав силлогизма (см.: Силлогизм). Типов теория
- Типология(от греч. Tipos — отпечаток, форма)
- Тождества закон
- Тождество
- Традиционная логика
- Транзитивности закон
- Умозаключения из суждений с отношениями
- Умозаключение
- Умозаключение статистическое
- Универсум рассуждения, см.: Предметная область. Условное высказывание
- Условное умозаключение
- Учетверение терминов(лат. Quaternio terminorum)
- Факт(от лат. Factum — сделанное, совершившееся)
- Фальсификация(от лат. Falsus — ложный, facio - делаю)
- Фигура силлогическая, см.: Силлогизм. Физическая модальность, см.: Онтологическая модальность. «философская логика»
- Формализация(от лат. Forma — вид, образ)
- Формальная логика, или: л о г и к а,
- Формальная суппозиция, см.: Суппозиция. Формальная теория
- Формы мысли, или: Формы мышления,
- Функтор
- Функция(от лат. Functio — осуществление, выполнение)
- Целевое обоснование
- Цель-средство
- Частное суждение
- Эвристика(от греч. Heurisko - отыскиваю, открываю)
- Эйлера круги
- Эквивалентность, или: Равнозначность,
- Эквивокация — логическая ошибка,
- Экзистенциальное высказывание(от лат. Existentia - существование)
- Эклектика
- Экспликация(от лат. Explicatio - разъяснение)
- Экстенсиональность
- Экстенсиональный контекст
- Эллиптическое высказывание
- Эмпирическое и теоретическое, см.: Теоретическое и эмпирическое. Энтимема(от греч. In thymos — в уме)
- Эпихейрема(от греч. Epiheirema — умозаключение)
- Эристика(от греч. Eristika — искусство спора) — искусство ведения спора.
- «Юма принцип»
- Языка функции, или Употребление языка,
- Язык логики
- Язык науки
- Язык семантически замкнутый
- Ясность
- Ивин Александр Архипович, Никифоров Александр Леонидович словарь по логике
- 117571, Москва, проспект Вернадского, 88,