logo search

Алгебра буля

 — исторически первый раздел математической логики, разработанный ирландским логиком и математиком Дж. Булем в середине XIX в. Буль применил алгебраические мето­ды для решения логических задач и сформулировал на языке ал­гебры некоторые фундаментальные законы мышления.

Буль представляет логику как алгебру классов (будем обозначать их символами А, В, С,...). Основными операциями в А. Б. являются: сложение классов AÈ.B; умножение классов АÇВ; дополнение класса А'. Свойства этих операций описываются следующими ак­сиомами:

la. AÈ(BÈC)=(AÈBC — ассоциативность сложения; 16. AÇ(BÇC)= (AÇВC — ассоциативность умножения; 2a.AÈB= BÈA                 — коммуникативность сложения; 2б.АÇВ =ВÇА — коммуникативность умножения; 3a.AÈ(ВÇС)= =(AÈB)Ç(AÈC) — дистрибутивность сложения относительно умножения; 36.AÇ(BÈC)==(AÇB)È(AÇC) — дистрибутивность умножения относительно сложения. В А. Б. существуют два элемента 0 и 1, операции с которыми подчиняются следующим соотношениям:

AÈ0=A;

AÇ1=A;

AÈA'=1;

AÇA'=0.

Характерная особенность А.Б. заключается в том, что в ней от­сутствуют коэффициенты и показатели степеней. Сумма двух А

 

[13]

равна А: АÈА=А, а не , как в обычной алгебре. Точно так же и произведение двух A равно A: АÇА=А, а не A2.

Важным законом А. Б. является принцип двойственно­сти, согласно которому если в некотором справедливом равен­стве мы заменим все вхождения È на Ç и Ç на È, 1 на 0 и 0 на 1, то получим равенство, двойственное первому и также справедли­вое. Примерами двойственных равенств являются приведенные выше аксиомы.

А.Б. широко применяется при проектировании и проверке элек­трических схем, в которых используются реле, работающие по прин­ципу «да - нет», при программировании и проектировании ЭВМ, в операциях с переключателями, сигналами, схемами. В современ­ной математической логике этот раздел значительно усовершен­ствован и разрабатывается как теория булевых алгебр, в том числе как алгебра множеств, алгебра высказы­ваний и т. п. В области традиционной логики соотношения А. Б. часто используются для иллюстрации и прояснения отношений между объемами понятий.