4. Отношения между суждениями
Между суждениями существуют логические отношения. Суждения как и понятия, могут быть сравнимыми и несравнимыми, совместимыми и несовместимыми. Но есть существенные различия, вызванные их различной логической структурой. Если сравнимые понятия соотносятся друг с другом по их объему, то между сравнимыми суждениями имеются многообразные отношенияпрежде всегопо их истинностным значениям. Анализ этих отношений предполагает выяснение таких вопросов: могут ли рассматриваемые суждения быть вместе истинными, вместе ложными, обусловливает ли истинность одного истинность другого и ложность одного ложность другого. Такой анализ имеет важное теоретическое и практическое значение, но его осуществление имеет свою специфику относительно простых и сложных суждений, поскольку они различаются своей логической структурой.
Отношения суждений по их истинностным значениямисследуются в логике междусравнимымисуждениями.
Несравнимыепростыесуждения имеютразные субъекты и предикаты, например: «Закон суров» и «Небо ясное». Истинность и ложность таких суждений не зависит друг от друга.Сравнимые простыесуждения имеютодинаковые субъект и предикат(поэтому они и сравнимы по содержанию), но различаются количественными и качественными характеристиками логической формы.Несравнимые сложныесуждения включают в себя полностью или частично разные по содержанию простые суждения. Например, суждения: «Прокуроры и следователи имеют юридическое образование» и «Прокуроры и следователи стоят на страже законности».Сравнимые сложные суждения включаютодинаковые исходные простые суждения, а различаются типом связи между ними (т.е. логическими союзами). Например: «Кражаимошенничество строго караются по закону», «Кражаилимошенничество строго караются по закону», «Неверно, что кража и мошенничество строго караются по закону».
Между сравнимымисуждениями выделяются два типа отношений:совместимостьинесовместимость.Суждениярассматриваются каксовместимые, если онимогут быть одновременно истинными, и какнесовместимые, если онине могут бытьодновременно истинными.
Совместимостьбывает трех видов:эквивалентность, подчинениеичастичная совместимость.
Суждения эквивалентны, если они всегда принимаютодинаковыеистинностные значения. Простые категорические суждения (А, Е, J, О) находятся в отношении эквивалентности, если они различны по количеству и качеству, и одно из них стоит под отрицанием:~ А эквивалентно О(«Неверно, что все юристы адвокаты» эквивалентно «Некоторые юристы не адвокаты»);~ О эквивалентно А(«Неверно, что некоторые адвокаты не юристы» эквивалентно «Все адвокаты юристы»);~ J эквивалентно Е(«Неверно, что некоторые студенты профессора» эквивалентно «Ни один студент не профессор»);~ Е эквивалентно J(«неверно, что ни один гриб не ядовит» эквивалентно «Некоторые грибы ядовиты»).
Сложные суждения находятся в отношении эквивалентности, когда при одних и тех же значениях истинности исходных простых суждений они принимают одинаковые значения. Это всегда можно установить построением истинностных таблиц для рассматриваемых сложных суждений.
Суждение находится в отношении подчиненияк другому (подчиняющему), если оно истинно во всех тех случаях, когда истинно подчиняющее. Это отношение имеет место между простыми категорическим суждениями, у которых количество различно, а качество одно и то же. В таком отношении находятся: общеутвердительные (А) и частноутвердительные (J) суждения; общеотрицательные (Е) и частноотрицательные (О) суждения. Здесь действуют такиезакономерности: (1) из истинности общего (АилиЕ) следует соответственно истинность частного (JилиО), но не наоборот; (2) из ложности частного (JилиО) следует ложность общего (АилиЕ), но не наоборот. Например, если истинно «Всестуденты нашей группы - успевающие» (А), то тем более истинно «Некоторыестуденты нашей группы успевающие» (J). В свою очередь, если ложно «Некоторые люди вправе нарушать закон» (J), то тем более ложно, что «Все люди вправе нарушать закон» (А).
Отношение подчинениявсложныхсуждениях имеет свойствалогическогоследования, которое характеризуется тем, что при истинности подчиняющего сужденияВподчиненное суждениеСвсегда истинно, и не может быть так, что суждениеВистинно, а суждениеС– ложно. Например: «Если у человека повышенная температура (В), то он болен (С)». При наличии температуры у человека (В) – истинно,следует с необходимостьюистинность суждения (С). Но при ложностиВ, суждениеСможет быть как истинным, так и ложным.
Отношение частичной совместимоститакже имеет место как между простыми, так и сложными суждениями. Для этого отношения характерна следующаязакономерность:невозможна совместная ложностьсуждений, находящихся в отношении частичной совместимости. В случае простых суждений – это отношение между суждениями одинакового количества, но разного качества: между частноутвердительными (J) и частноотрицательными (О) суждениями. Из ложности одного из них следует истинность другого, но не наоборот: из истинности одного из них не следует с необходимостью ложность другого – оно также может быть истинным. Эту закономерность особо следует учитывать в практике мышления. Так, приистинности(J) – «Некоторые следователи независимы» может бытьистинными (О) – «Некоторые следователи не являются независимыми». Но приложностисуждения (J) – «Некоторые следователи независимы» необходимо будетистиннымпротивоположное по качеству суждение, т.е. (О) – «Некоторые следователи не являются независимыми».
Рассмотрим теперь несовместимые суждения. Различают два вида несовместимости:противоречиеипротивоположность.
Противоречие– это такое отношение между суждениями, при которомистинность одного необходимо влечет ложность другого и наоборот. Иными словами, противоречивые суждения не могут вместе быть ни истинными, ни ложными. Среди простых суждений это отношение имеет место между: общеутвердительными (А) и частноотрицательными (О) суждениями; общеотрицательными (Е) и частноутвердительными (J) суждениями. Так, еслиложносуждение «Все следователи независимы», то истинно «Некоторые следователи не являются независимыми». Отношение противоречия между сложными суждениями означает, что их истинностные значения могут лишь исключать друг друга.
Противоположностьмежду суждениями проявляется в том, что данные суждения не могут быть вместе истинными, но могут быть вместе ложными. Для этого отношения характерназакономерностьобратная той, которая характерна для отношения частичной совместимости: если одно из двух сужденийистинно, то другоенеобходимо ложно, но приложностиодного из них другое может бытькак истинным,так и ложным. Иными словами, возможна ложность обоих суждений.
В случае простых суждений, это отношение имеет место между общеутвердительными (А) и общеотрицательными (Е) суждениями. Так, если истинно (А) – «Все адвокаты – юристы», то ложно (Е) – «Ни один адвокат не юрист». Но если ложно (А) – «Все свидетели правдивы», то из него не следует истинность суждения (Е) – «Ни один свидетель не правдив», оно тоже ложно. Но в других случаях (Е) может быть истинным. Так, если ложно суждение (А) – «Все граждане вправе нарушать закон», то истинно (Е) – «Ни один гражданин не вправе нарушать закон».
Знание отношений между суждениями по их истинным значениям важно в познавательном и практическом планах, поскольку помогает избегать возможных ошибок в собственных рассуждениях, позволяет грамотно анализировать различные контексты, высказывания оппонентов. Часто встречаются ситуации, когда суждениями оперируют как исключающими друг друга. Например, когда кто-то выдвигает суждение в форме «Некоторые SестьР», а другой - в форме «НекоторыеSне естьР». Логический же анализ этих суждений показывает, суждения, высказанные в такой форме, не исключают друг друга, а являются частично совместимыми, и оба могут оказаться истинными. Весьма часто также в споре из истинности частного суждения (JилиО) выводят истинность общего (АилиЕ) соответственно, что нарушает правильность отношений между ними.
В дискуссии, споре, в частности по юридическим и экономическим вопросам, чтобы опровергнуть общее ложное суждение, часто используют противоположное ему общее суждение. Но так легко попасть впросак: оно тоже может оказаться ложным. В логическом отношении для точного опровержения достаточно привести противоречащее суждение(см. ниже схему логического квадрата). Смешение противоположных и противоречащих суждений довольно частая ошибка в практике мышления. Поэтому важно уметь осуществлять логический анализ отношений между суждениями.
Для осуществления логического анализа отношений между простымисуждениями используют графическую схему, называемую «логическим квадратом»: его вершины символизируют четыре вида простых категорических суждений –А, Е, J, О; стороны и диагонали – отношения между этими суждениями.
Jчастичная совместимостьО АпротивоположностьЕ подчинение подчинение
противоречие
Чтобы определить отношение между простыми категорическими суждениями, нужно:
определить, какого вида эти суждения: А, Е, J, О;
найти соответствующие углы логического квадрата;
посмотреть какое отношение вписано между ними;
по характеру отношения установить связь истинностных значений для анализируемых суждений.
Например, нужно определить отношение между суждениями: (1) «Не все металлы твердые» и (2) «Некоторые металлы твердые». Для этого осуществим их логический анализ. Прежде всего, определяем вид суждений (1) и (2): второе суждение – частноутвердительное (J) , а первое суждение – общеутвердительное с отрицанием. Превращаем его согласно приведенным выше эквивалентностям (~АэквивалентноО) в эквивалентное суждение –О. Определяем по логическому квадрату отношение междуJиО. Отношение между ними – частичная совместимость, что означает, что совместная ложность невозможна, но возможна совместная истинность.
Для определения отношений между сложными суждениями нужно:
определить по главному логическому союзу виданализируемых сложных суждений;
записать символическив виде формул их логические формы;
построить их совместную истинностную таблицу;
сравнить истинностные значения формул данных суждений и по их характеру определить вид отношения.
В качестве примера определим отношения между суждениями: (1) «Он не читает ни детективных, ни исторических романов» и (2) «Он читает либо детективные, либо исторические романы». Первое суждение – конъюнктивное, состоит из двух отрицательных суждений: «Он не читает детективных романов» (~А), «Он не читает исторических романов» (~В), соединительный союз () опущен. Символическая запись формы суждения (1): ~А~В. Второе суждение – строго дизъюнктивное, состоит из двух суждений: «Он читает детективные романы» (А), «Он читает исторические романы» (В), которые связаны двойным разделительным союзом «либо...либо» (). Поэтому символическая запись логической формы суждения (2):АВ. Построим для них совместную истинностную таблицу, гдеА, В- исходные суждения.
А | В | ~А | ~В | ~А~В | АВ |
и | и | л | л | л | л |
и | л | л | и | л | и |
л | и | и | и | л | и |
л | л | и | и | и | л |
Сравнивая результирующие столбцы (два крайних справа), которые представляют формулы суждений (1) и (2), видим, что эти суждения не бывают одновременно истинными, значит они несовместимыесуждения. Но в первой строке обнаруживаем их совместную ложность, следовательно они находятся в отношениипротивоположности.
КОНТРОЛЬНЫЕВОПРОСЫ |
|
|
тесты |
|
|
|
|
- общеутвердительное, - общеотрицательное, - частноутвердительное, - частноотрицательное
- общеутвердительное, - общеотрицательное, - частноутвердительное, - частноотрицательное
- общеутвердительное, - общеотрицательное, - частноутвердительное, - частноотрицательное |
|
|
|
|
|
|
|
|
упражнения |
|
|
Кабы старость да могла, Жизнь так часто не хромала, Жизнь бы иначе пошла (Вяземский)
|
|
|
|
|
|
Петров: Иванов виноват, а Сидоров не виновен Иванов: Если Петров виновен, то виновен Сидоров Сидоров: Я не виноват, но хотя бы один из них виноват Построив истинностные таблицы полученных суждений, ответьте на следующие вопросы:
|
- В в е д е н и е
- Г л а в аI. Предмет логики как науки
- 1. Мышление как объект логики
- 2. Содержание и форма мышления
- 3. Истинность и правильность мышления. Логический закон
- 4. Основные законы логики
- Г л а в аIi.Понятие
- 1. Понятие как логическая форма мышления
- 2. Содержание и объем понятия
- 3. Виды понятий
- 4. Отношения между понятиями
- 5. Логические операции с понятиями
- О п р е д е л е н и е п о н я т и й
- П р а в и л а о п р е д е л е н и я
- Д е л е н и е п о н я т и й
- П р а в и л а д е л е н и я
- Г л а в аIii.Суждение
- 1. Суждение как форма мышления
- 2. Простые суждения. Логическая структура и виды
- Виды простых суждений
- 3. Сложные суждения: логическая структура и виды
- Виды сложных суждений
- 4. Отношения между суждениями
- Г л а в аIv. Умозаключение
- 1. Умозаключение как форма мышления
- 2. Дедуктивные умозаключения
- 2.1. Непосредственные умозаключения
- 2.2. Простой категорический силлогизм (пкс)
- Правила терминов
- Правила посылок
- 2.3. Энтимема
- 2.4. Дедуктивные умозаключения из сложных суждений
- 3. Недедуктивные умозаключения
- 3.1. Индуктивные умозаключения
- Метод сходства
- Метод различия
- Метод сопутствующих изменений
- Метод остатков
- 3.2. Умозаключения по аналогии
- Сводная таблица
- Г л а в аV.Логические основы аргументации
- 1. Аргументативный процесс и его структура
- 2. Виды аргументативного процесса
- 3. Правила аргументации. Ошибки в аргументации
- Правила и ошибки по отношению к тезису.
- Правила и ошибки по отношению к аргументам.
- Правила и ошибки демонстрации
- Литература Основная
- Дополнительная