§ 5. Многозначные логики
В многозначных логиках число значений истинности аргументов и функций для высказываний может быть любым конечным (больше двух) и даже бесконечным. В настоящем параграфе используются так называемая польская запись, которую применял Лукасевич, и обычная, применяемая в двузначной логике: отрицание обозначается через Nx или, конъюнкция - через Кху или х v у, нестрогая дизъюнкция - через Аху или х v у, материальная импликация - через Сху или х→ у. Значение функции от аргумента а записывается так: [а]. Тавтологией (или общезначимой, или законом логики, или тождественно-истинной) называется формула, которая при любых комбинациях значений входящих в нее переменных принимает выделенное (или отмеченное) значение; как правило, это значение “истина” (чаще всего в рассматриваемых системах “истина” обозначается цифрой 1).
Развитие многозначных логик подтверждает мысль, что истина всегда конкретна, а также положение об относительном характере конкретно-научных знаний: то, что является тождественно-истинным в одной логической системе, не оказывается тождественно-истинным в другой.
________________
'См.: Доклады АН СССР. 1974. Т. 214, № 1-6; Т. 215, № 1.
417
- Глава X этапы развития логики как науки
- § 1. Краткие сведения из истории классической и неклассических логик
- Логика в Древней Индии
- Логика Древнего Китая
- Логика в Древней Греции
- Логика в средние века
- Логика эпохи Возрождения и Нового времени'
- Логика в России
- Математическая логика
- § 2. Развитие логики в связи с проблемой обоснования математики
- § 3. Интуиционистская логика
- § 4. Конструктивные логики
- Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- Конструктивная логика а. А. Маркова
- § 5. Многозначные логики
- Трехзначная система Лукасевнча
- Отрицание Лукасевича
- Трехзначная система Гейтинга
- Импликация Гейтинга
- Две бесконечнозначные системы Гетмановой:
- § 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- § 7. Модальные логики
- 1) P*qq*p;
- 4) (P*q)*rp*(q*r),
- 6)(Pq)*(qr) [pr};
- 7) P*(pq)q.
- § 8. Положительные логики
- § 9. Паранепротиворечивая логика