Математическая логика
В XIX в. появляется математическая логика. Немецкий философ Г. В. Лейбниц (1646-1716) - величайший математик и крупнейший философ XVII в. - по праву считается ее основоположником, Лейбниц пытался создать универсальный язык, с помощью которого споры между людьми можно было бы разрешать посредством вычисления. При построении такого исчисления Лейбниц исходил из своего “Основного принципа разума”, который гласил, что во всех истинных предложениях, общих или частных, с необходимостью или случайно предикат содержится в субъекте. Он хотел всякому понятию дать числовую характеристику и установить такие правила оперирования с этими числами, которые позволили бы не только доказывать вообще
_________________________
'См.: Васильев Н. А. Воображаемая логика. М., 1989; Бажанов В. А. Николай Александрович Васильев. М., 1988. (Эта книга- первая научная биография Н. А. Васильева, написанная на основе ранее неизвестных и непубликовавшихся материалов).
391
все истины, доступные логическому доказательству, но и открывать новые. В последнем обстоятельстве он видел особую слугу своей всеобщей характеристики. Лейбниц говорит о как о чудесном общем языке, имеющем свой словарь (т. е. характеристические числа, отнесенные к понятиям) и свою грамматику (правила оперирования с этими числами). Лейбниц хотел построить арифметизированное логическое исчисление в некоторой вычисляющей машины (алгоритма). Однако этого ему сделать не удалось.
В этой концепции Лейбница неприемлемо прежде всего что все содержание наших понятий якобы может быть выражено их характеристическими числами. Несостоятельным было и представление Лейбница о том, что человеческое мышление может быть полностью заменено вычисляющей машиной. ..
Лейбниц полагал, что математику можно свести к логике, а логику считал априорной наукой. Сторонников такого обоснования математики называют логицистами — представителями субъективно-идеалистического направления (считающего первичным сознание человека) в обосновании математики.
Лейбниц является предшественником логицизма в том смысле, что он предложил сведение математики к логике и математизацию логики: построение самой логики как некоторой арифметики или буквенной алгебры. Но Лейбниц был предшественникам логицизма и в том, что пытался создать арифметизированное логическое исчисление, о котором мы говорили.
Покажем, как это делал Лейбниц. Возьмем такой категорический силлогизм:
+70, -30 +10, -3
Всякий мудрый есть благочестивый.
+70, -33 +8, -11
Некоторые мудрые богаты.
+8, -11 +10, -3
Некоторые богатые благочестивы.
392
Сверху над понятием написан выбранный наудачу правильный (по Лейбницу) набор характеристических чисел для терминов посылок. Истинность общеутвердительного суждения “Все S суть Р” (первая посылка) выражается тем, что обе характеристики субъекта делятся на соответствующие характеристики предиката, т. е. 70 (точно, без остатка) делится на 10, а - 33 делится на - 3, и числа, стоящие на диагоналях, - взаимно простые, т. е. + 70 и - 3 так же, как
-33 и + 10, взаимно простые числа. Истинность частноутвердительного суждения, по Лейбницу, должна выражаться таким правилом: числа, стоящие на диагоналях, должны быть взаимно простыми, т. е. не иметь общих делителей, кроме единицы.
+70,-33 +8,-11
Посылка “Некоторые мудрые богаты” имеет такие числа:
т. е. на обеих диагоналях стоят взаимно простые числа.
И заключение этому правилу также удовлетворяет, ибо на диагоналях стоят взаимно простые числа:
Истинность общеотрицательного суждения “Ни одно S не есть Р” у Лейбница выражалась тем, что по крайней мере на одной диагонали стоят не взаимно простые числа. Истинность частноотрицательного суждения выражалась тем, что по крайней мере одна из характеристик субъекта не делится на соответствующую характеристику предиката.
393
Чтобы воспользоваться исчислением Лейбница, нужно рассуждение облечь в форму силлогизма и посмотреть, правильный он или неправильный. Однако построенная Лейбницем система удовлетворяла этому требованию только в применении к правильным, по Аристотелю, построенным силлогизмам. Автором в стоящего учебника доказано, что все 19 правильных, по Аристотелю, модусов силлогизма окажутся правильными и по критерию Лейбница. Но в отношении неправильных модусов категорического силлогизма Аристотеля дело обстоит по-иному. Всегда можно построить такой пример, когда при разных правильных набоpax числовых характеристик для посылок получаются разные оценки заключения: в одних случаях оно оказывается истинным, в других - ложным.
Исчисление Лейбница, таким образом, не выдержало проверки, что, конечно, заметил и сам Лейбниц, перешедший в дальнейшем к построению буквенного исчисления по образцу алгебры. Но тоже неудачно.
Однако в этих замыслах Лейбница не все было неверно. Сам по себе метод арифметизации в математической логике играет весьма существенную роль как вспомогательный прием. В нем состоит, например, сущность метода, с помощью которого известный австрийский математик и логик К. Гёдель доказал неосуществимость лейбницевой мечты о создании такой всеобщей характеристики, которая позволит заменить все человеческое мышление вычислениями.
Ложной была именно метафизическая идея Лейбница о сведении всего человеческого мышления к некоторому математическому исчислению. Поэтому были ложны и вытекающие из нее следствия.
Интенсивное развитие математическая логика получила в работах Д. Буля, Э. Шрёдера, С. Джевонса, П. С. Порецкого и других логиков.
Английский логик Джордж Буль (1815-1864) разрабатывал алгебру логики - один из разделов математической логики. Предметом его изучения были классы (как объемы понятий), соотношения между ними и связанные с этим операции. Буль переносит на логику законы и правила алгебраических действий.
394
В работе “Исследование законов мысли”', которая оказала большое влияние на развитие логики. Буль ввел в логику классов в качестве основных операций сложение (“+”), умножение (“ * ” или пропуск знака) и вычитание (“-”). В исчислении классов сложение соответствует объединению классов, исключая их общую часть, а умножение - пересечению. Вычитание Буль рассматривал как действие, противоположное (opposite) сложению, - отделение части от целого, то, что в естественном языке выражается словом “кроме” (except).
Будь ввел в свою систему логические равенства, которые он записывал посредством знака “ = ”, соответствующего связке “есть”. Суждение “Светила суть солнца и планеты” в виде равенства им записывается так: х = у + z, откуда следует, что х - z =у. Согласно Булю, в логике, как и в алгебре, можно переносить члены из одной части равенства в другую с обратным знаком. Будь открыл закон коммутативности для вычитания: х-у = -у+х и закон дистрибутивности умножения относительно вычитания: z(x - у} = zx - zy. Он сформулировал общее правило для вычитания: “Если от равных вычесть равные, то остатки будут равными. Из этого следует, что мы можем складывать или вычитать равенства и употреблять правило транспозиции точно так же, как в общей алгебре”2.
Предметом исследования ученого были также высказывания (в традиционной логике их называют суждениями). В исчислении высказываний, по Булю, сложение (“ + ”) соответствует строгой дизъюнкции, а умножение (“ * ” или пропуск знака) - конъюнкции.
Чтобы высказывание записать в символической форме, Буль составляет логическое равенство. Если какой-либо из терминов высказывания не распределен он вводит термин V для обозначения класса, неопределенного в некотором отношении. Для того чтобы выразить частноотрицательное суждение, например: “Некоторые люди не являются благоразумными”, Буль сначала представляет его в форме: “Некоторые люди являются неблагоразумными”, а затем выражает в символах обычным способом.
______________________
'См.: Boole George. An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logik and Probabilities. London, 1854.
2Boole George. An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logik and Probabilities. London, 1854. P. 36.
395
По Булю, существует три типа символического выражения суждений: Х=VY(только предикат не распределен):
Х= Y (оба термина - субъект и предикат - распределены);
VX = VY (оба термина не распределены).
Диалектика соотношения утверждения и отрицания в понятиях и суждениях у Буля такова: без отрицания не существует утверждения и, наоборот, во всяком утверждении содержится отрицание. Утверждения и отрицания связаны с универсальным классом: “Сознание допускает существование универсума не априори, как факт, не зависящий от опыта, но либо апостериори, как дедукцию из опыта, либо гипотетически, как основание возможности утвердительного рассуждения”'.
Различая живой разговорный язык и “язык” символический, Буль подчеркивал, что язык символов - лишь вспомогательное средство для изучения человеческого мышления и его законов.
Немецкий математик Эрнст Шредер (1841-1902) собрал и обобщил результаты Буля и его ближайших последователей. Он ввел в употребление термин “Logikkalkul” (логическое исчисление), новые по сравнению с Булем символы. В основу исчисления классов он положил не отношение равенства, как это было у Буля, а отношение включения класса в класс, которое обозначал как а b. Знак “ + ” Буль использовал для обозначения объединения классов, исключая их общую часть, т. е. симметрическую разность (см. рис. 26), а у Шредера знак “+” обозначает объединение классов без исключения их общей части.
Рис. 26
____________________
'Boole George. An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logik and Probabilities. London, 1854. P. 85.
396
Пропуском знака Шрёдер обозначает операцию пересечения классов, например, ab.
Во взглядах Э. Шрёдера на отрицание можно отметить много интересного и нового по сравнению со взглядами Буля. Под отрицанием а1, класса а Шрёдер понимает его дополнение до 11.
Если классов больше двух, то Шрёдер оперировал с ними по сформулированным им правилам. Правило 1: если среди сомножителей некоторого произведения находятся такие, из которых один является отрицанием другого, то произведение “исчезает”, т. е. равно 0. Например, abc • ab1 cd1 = 0, так как имеется b и b1,.
Правило 2: если среди членов некоторой суммы находится хотя бы один, который оказывается отрицанием другого, то вся сумма равна 1:
a+b+c1 +a+c+d1 =1.
Значительное внимание Шрёдер уделил анализу структуры отрицательных суждений. Отрицательную частичку он прилагает к предикату, т. е. вместо “А не есть В” он берет “А есть не-В”, Так, суждение “Ни один лев не является травоядным”, если следовать идеям Шрёдера, надо заменить на суждение “Все львы являются нетравоядными”.
Класс а1, как отрицание класса а Шрёдер считает очень неопределенным. И в доказательство этой мысли приводит такой пример. Понятие “несражающийся” (в армии) охватывает: саперов, полковых ремесленников, служащих лазарета, врачей, которые относятся к армии, но не сражаются.
Опираясь на законы де Моргана, Шрёдер проводит анализ языка разговорной речи. Выражение с а1,b1, в речи означает, что “каждое с есть не- а и (одновременно) не-b”. Для него можно выбрать другое выражение: “Каждое с не есть ни a, ни b”. Это конъюнктивное суждение, примером которого может быть: “Каждая рыба - не птица и не млекопитающее”. Другое суждение: “Никакая рыба не есть птица и млекопитающее” - означает в символическом виде с (аb)1,, что эквивалентно, на основании правила де Моргана,
___________________
1См.: Schroder E. Vorlesungenuber die Algebra der Logic. Bd. 1. Leipzig, 1890. S. 302.
397
с a1, +b1. Так называемое отрицательное по связке суждение “ни а, ни b не есть с” представляется в виде а + b c1) .
Шрёдер формулирует правила (или требования) научной классификации:
1. Между родом и суммой его видов должно быть тождество.
2. Все виды должны быть дизъюнктивными, т. е. должны исключать друг друга и попарно в произведении давать 0.
3. Для расчленения рода на виды должно быть одно основание. Используя отрицание. Шредер показал, как классифицируемый род делится на виды и подвиды.
В логическом исчислении, доведенном до наибольшей простоты, Шредер признает три основных действия: сложение (трактуя его как нестрогую дизъюнкцию), умножение и отрицание. Однако вычитание он считает небезусловно выполнимой операцией.
Автор данного учебника признает вполне приемлемой в логике классов операцию вычитания классов. Но понимает ее принципиально иначе, чем Буль и Шредер. Буль и Шредер считали, что в разности а - b b должно полностью входить в а, если же b > а или а и b - несовместимы, то операция вычитания невыполнима. В отличие от Буля и Шредера мы допускаем возможной (т. е. выполнимой) разность всяких двух классов а и b, из которых b может и не быть частью а; в качестве следствий мы учитываем случаи вычитания, когда классы а и b являются пустыми или универсальными.
Наиболее известные работы английского логика Стенли Джевонса (1835-1882) - “Principles of Science, a Treatise on Logic and Scientific Method” (London, 1874) и “Elementary Lessons in Logic, Deductive and Inductive” (London, 1870).
В качестве логических операций Джевонс признавал конъюнкцию, нестрогую дизъюнкцию и отрицание и не признавал обратных логических операций - вычитания и деления. Классы он обозначал буквами А, В, С..., а их дополнения до универсального класса, обозначаемого 1, или их отрицания -соответственно курсивными буквами а, b, с... 0 обозначает у него нулевой (пустой) класс; связка в суждении заменяется знаком равенства.
Большое значение Джевонс придавал принципу замещения (или подстановки), который формулируется им так: если только существует одинаковость, тождество или сходство, то все, что
398
верно об одной вещи, будет верно и о другой. Этот принцип играет важную роль в умозаключении. Для обозначения отношения одинаковости (или тождества) Джевонс употребляет знак “ = ”.
Обозначив положительные и отрицательные термины соответственно через А и а, В и b, Джевонс записывает закон непротиворечия как Аа = 0. Критерием ложности заключения, по Джевонсу, является наличие в нем противоречия, т. е. утверждения и отрицания одного и того же положения, что записывается, например, как наличие Аа, Вb, АВСа.
Джевонс считал, что утвердительные суждения можно представлять в отрицательной форме. Но он напрасно категорически заявлял, что имеются сильные основания в пользу того, чтобы употреблять все предложения в их утвердительной форме, а различие (т. е. отрицательные суждения) неспособно быть основанием умозаключения. Джевонс не отрицал, что утверждение и отрицание, сходство и различие, равенство и неравенство представляют пары одинаково основных отношений; но утверждал, что умозаключение возможно только там, где прямо находится или подразумевается утверждение, сходство или равенство, словом, какой-нибудь вид тождества.
Согласно законам диалектики, тождество и различие являются двумя сторонами единого предмета или процесса. Отражение отношений тождества и различия, имеющихся в самих предметах действительного мира, находит свое выражение и в мышлении в формах умозаключений. Поэтому отбросить различие, выражающееся в отрицательных суждениях, и все свести только к тождеству, выражающемуся в утвердительных суждениях, нельзя, да и нет в этом необходимости. Единство противоположностей - тождества и различия - неразрывно.
Интересны и оригинальны взгляды Джевонса на категорический силлогизм с двумя отрицательными посылками. Джевонс утверждает, что его принцип умозаключения ясно отличает случаи, когда оно оказывается правильным, от тех случаев, когда оно неправильно. Он приводит пример умозаключения:
Все, что не металлично, не способно к сильному магнитному влиянию.
Уголь не металличен.
Уголь не способен к сильному магнитному влиянию.
399
Здесь из двух отрицательных посылок получается истинное отрицательное заключение. Джевонс считает; что там, где возможно подставлять тождественное вместо тождественного, допустим вывод заключения из двух отрицательных посылок.
Джевонс внес значительный вклад в алгебру логики, особенно в проблему отрицания классов и отрицательных суждений.
Следующий этап в развитии математической логики связан с именем русского логика, математика и астронома Платона Сергеевича Порецкого (1846-1907). Его работы' существенно обобщают и развивают достижения Буля, Джевонса и Шредера.
Анализируя понятия, Порецкий различает две формы: форму, обладающую данным признаком, обозначаемую буквами а, b, с..., и форму, им не обладающую, обозначаемую а, b,с…, и т. д.2 Формы совместного обладания или необладания несколькими признаками записывает так: a,a1 ,b,b1 (без особого знака между буквами). Современное пересечение классов Порецкий называет операцией реализирования (умножения), обозначая ее “ • ”, а операцию объединения классов - абстрагированием (сложением), обозначая ее “ ? ”, т. е. знаком вопроса; 0 и 1 обозначают пустой класс и универсальный. Порецкий вводит операцию отрицания классов (отрицание а обозначается через а1,) - это дополнение к классу а. Для каждого данного а его отрицание, т. е. о,, может быть различно. Это определяется избранным универсальным классом. Так, если за 1, т. е. универсум, принять англичан, а за а класс артистов, то а1, означает англичан-не-артистов, но если 1 обозначает класс людей, то a1, обозначает людей-не-артистов и т. д.
Заслуга Порецкого в том, что он рассматривал логические операции не только над отдельными логическими классами, но и над логическими равенствами. Порецкий считает, что если два класса состоят из одних и тех же предметов, т.е. имеют равные объемы и могут отличаться только формой, то они равны между собой. Соединяя равные классы знаком “ = ”, мы получаем логическое
_______________________
'См.: Порецкий П. С. Решение общей задачи теории вероятностей при помощи математической логики. Казань, 1887, и др.
2Порецкий П. С. О способах решения логических равенств и об обратном способе математической логики. Казань, 1884. С. III.
400
равенство. Равенством логических классов русский логик называет полную их тождественность, т. е. одинаковость их логического содержания, считая, что все их различие может состоять только в способе их происхождения. Примером такого равенства является закон де Моргана: (m + n), = т1 • n1. Если классы а и b равны, то и их отрицания, т. е. классы а и b, также равны. По его мнению, отрицание всякого равенства приводит к новому равенству, тождественному первоначальному.
По мнению Порецкого, операция отрицания неприменима к системам равенств. К соединению двух и более равенств в одно новое равенство применимы лишь две логические операции: сложение и умножение отдельных частей равенств, причем предварительно каждое отдельное равенство может быть в случае надобности заменено его отрицанием.
В созданной им теории логики Порецкий подчеркивал взаимосвязь двух проблем: выведения следствия из заданной системы посылок и нахождения тех посылок, из которых данное логическое равенство может быть получено в качестве следствия. Несколько подробнее остановимся на методе нахождения всех простых следствий из данных посылок, который в теории логики получил название метода Порецкого - Блэйка (его предложил американский математик Блэйк' на основе работы Порецкого).
Простым следствием из данных посылок называется дизъюнкция каких-либо букв или их отрицаний, являющаяся логическим следствием из этих посылок, и притом таким, которое не поглощается никаким более сильным следствием такого же вида. (Мы говорим, что а сильнее b, если из а следует b, но из b не следует а). Все простые следствия из данных посылок можно получить, выполнив преобразования следующих пяти типов:
1) привести конъюнкцию посылок к конъюнктивной нормальной форме (КНФ). КНФ есть конъюнкция из дизъюнкции элементарных высказываний или их отрицаний, эквивалентная данному выражению, т. е. если есть импликация, то ее надо заменить на дизъюнкцию по формуле (а → b= b);
_______________________
'См.: Blake A. Canonical Expressions in Boolean Algebra. Chicago, 1938.
401
2) произвести все операции “отбрасывания”, т. е. члены вида a x (или а • х • ) можно исключить, так как этот член тождественно истинен;
3) использовать законы выявления, т. е. формулы
ах ^ b = ах ^ b ^ аb; или ax b = ax b ab;
4) произвести все “поглощения” на основании законов поглощения:
а ^ (a b) = а и а (а ^ b)= а;
5) из всех повторяющихся членов оставить только один (на основании законов идемпотентности).
В результате получится силлогистический многочлен, который будет содержать все простые следствия из данных посылок, и только простые следствия. Они интереснее, чем обычные логические следствия, так как зависят от меньшего числа пара метров (элементарных высказываний).
Покажем это на конкретном примере. Из данных трех посылок, имеющих соответственно, формы (1) q →, (2) p q и (3) r, требуется вывести все разные (неэквивалентные между собой) формы простых логических следствий. Для решения задачи выполним следующие операции:
1. Соединяем посылки знаками конъюнкции и приводим выражение в КНФ:
(q →) ^ (p q) ^ r = () ^ (p q) ^ r
или в другой записи
pq ^ r.
2. В полученной КНФ к членам 1 и 3 применяем закон выявления, получаем
^ pq ^ r = ^ pq ^
Затем ко второму и четвертому членам снова применяем этот же закон.
402
^ pq ^ r ^ = ^ pq ^ r ^ ^p
3. Произведем операции “поглощения”. Первый член ()поглощается четвертым (), поэтому отбрасываем первый член, а второй член (pq) поглощается пятым членом (p). В результате этого получим
^ pq ^ r ^ ^p =r ^ ^ p
Вывод: при данных посылках суждения r и р истинны, а суждение q ложно, т. е. если суждениями выражены некоторые события, то событие r и событие р наступят, а событие q не наступит.
Исследования Порецкого продолжают оказывать стимулирующее влияние на развитие алгебраических теорий и в наши дни.
В XX в. математическая логика развивалась в трудах Ч. С. Пирса и Дж. Пеано.
Американский логик Чарльз Сандерс Пирс (1839-1914) внес существенный вклад в разработку алгебро-логических концепций и явился основоположником новой науки - семиотики (общей теории знаков). В работах Пирса содержится тенденция к расчленению семиотики на прагматику (анализирует отношение знака к его исследователю), семантику (выясняет отношение знака к обозначаемому им объекту) и синтактику (исследует взаимоотношения между знаками).
Пирс пишет о том, что реальное можно определить как нечто, свойства которого независимы от того, что о них мыслят. Наиболее общим подразделением знаков он считал такие: изображения (icons), индексы (indices) и символы (symbols). Пирс предлагал классификацию знаков и по другим основаниям.
Пирс предложил строить исчисление высказываний лишь на одной операции, этим предвосхитив результаты М. X. Шеффера (Шеффер также строил исчисление высказываний на одной операции, которая вошла в историю логики под именем ее создателя - штрих Шеффера). Единственной логической операцией Пирс предлагал считать отрицание нестрогой дизъюнкции.
Пирсу принадлежат работа по логике “Studies in Logic” и другие.
403
Достижения Джузеппе Пеано (1858-1932), итальянского математика, явились переходным звеном от алгебры логики, в том виде, какой ей придали Буль, Шредер, Порецкий и Пирс, к современной форме математической логики. Основные результаты Пеано были опубликованы в пятитомном “Формуляре математики”'.
Пеано ввел следующие, употребляющиеся и ныне, символы:
а) “ ” - знак принадлежности элемента к классу;
б) “” - знак включения одного класса в другой класс;
в) “” - знак объединения классов;
г) “” - знак для обозначения операции пересечения классов.
Крупным вкладом Пеано в развитие аксиоматического метода явилась его система из пяти аксиом для арифметики натуральных чисел. На базе своей аксиоматики Пеано строит всю теорию натуральных чисел.
На заключительном этапе своей научной деятельности Пеано приступил к систематическому изложению логики как особой. по его мнению, математической дисциплины.
Далее развитие математической логики осуществлялось по многим направлениям, а также в проблемном плане. Это было обусловлено необходимостью дальнейшего освоения как классической и неклассической логик, так и возникшими трудностями в обосновании математики.
Краткому освещению основных направлений в современной логике посвящены последующие разделы данной главы.
Yandex.RTB R-A-252273-3- Глава X этапы развития логики как науки
- § 1. Краткие сведения из истории классической и неклассических логик
- Логика в Древней Индии
- Логика Древнего Китая
- Логика в Древней Греции
- Логика в средние века
- Логика эпохи Возрождения и Нового времени'
- Логика в России
- Математическая логика
- § 2. Развитие логики в связи с проблемой обоснования математики
- § 3. Интуиционистская логика
- § 4. Конструктивные логики
- Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- Конструктивная логика а. А. Маркова
- § 5. Многозначные логики
- Трехзначная система Лукасевнча
- Отрицание Лукасевича
- Трехзначная система Гейтинга
- Импликация Гейтинга
- Две бесконечнозначные системы Гетмановой:
- § 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- § 7. Модальные логики
- 1) P*qq*p;
- 4) (P*q)*rp*(q*r),
- 6)(Pq)*(qr) [pr};
- 7) P*(pq)q.
- § 8. Положительные логики
- § 9. Паранепротиворечивая логика