logo
Гетманова_1998 / Глава 10

Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова

Первыми представителями конструктивной логики были математики А. Н. Колмогоров (1903-1987) и В. И. Гливенко (1897-1940). Первое исчисление, не содержащее закон исключенного третьего, было предложено в 1925 г. А. Н. Колмого­ровым в связи с его критикой концепции Л. Брауэра, а в даль­нейшем развито В. И. Гливенко. Позже было опубликовано исчисление Гейтинга, которое Колмогоров интерпретировал как исчисление задач, что породило содержательное истолко­вание исчислений, не пользующихся законом исключенного третьего, а это, в свою очередь, легло в основу всех дальней­ших, подлинно научных исследований таких исчислений.

Введя понятия “псевдоистинность” (двойное отрицание суждения) и “псевдоматематика” (“математика псевдоистинно­сти”), Колмогоров доказал, что всякий вывод, полученный с помощью закона исключенного третьего, верен, если вместо каж­дого суждения, входящего в его формулировку, поставить суж­дение, утверждающее его двойное отрицание. Тем самым он показал, что в “математике псевдоистинности” законно приме­нение принципа исключенного третьего.

414

Колмогоров различает две логики суждений – общую и част­ную. Различие между ними заключается в одной аксиоме А, которая имеется лишь среди аксиом частной логики. Интересна диалектика соотношения содержания и областей применения этих логик: содержание частной логики суждений богаче, чем общей, так как частная логика дополнительно включает аксиому А, но область применения ее уже. Из системы частной логики мож­но вывести все формулы традиционной логики суждений.

Какова же область применения частной логики суждений? Все ее формулы верны для суждения типа А. , в том числе для всех финитных и для всех отрицательных суждений, т. е. область применимости ее совпадает с областью применимости фор­мулы двойного отрицания А. (Символами А.. ... обозна­чены произвольные суждения, для которых из двойного отрица­ния следует само суждение).