§ 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
В главе IV “Законы (принципы) правильного мышления” была проанализирована специфика действия закона исключенного третьего при наличии “неопределенности” в познании, сделан вывод, что закон этот применяется там, где познание имеет дело с жесткой ситуацией: или - или, истина - ложь. Во многих неклассических логических системах формулы, соответствующие законам исключенного третьего и непротиворечия, не являются тавтологиями.
Ниже приведена таблица (см. с. 430), в которой знаком “ + ” обозначено то, что в указанной логической системе закон непротиворечия и закон исключенного третьего, т. е. формулы и , являются тавтологиями (или выводимыми формулами), и соответственно знаком “ - ”, когда не являются. Рассмотрено, кроме того, отрицание закона непротиворечия, выражающееся формулой, и отрицание закона исключенного третьего, выражающееся формулой . В этих формулах имеется в виду та форма отрицания, которая принята в указанной логической системе.
В интуиционистской и конструктивных логиках закон исключенного третьего для бесконечных множеств “ не работает ”. Осуществимость в конструктивной математике понимается как потенциальная осуществимость конструктивного процесса, дающего в результате один из членов дизъюнкции, который должен
429
Вид логической системы | Закон исключенного третьего a
| Закон непротиворечия
| Отрицание закона исключенного третьего
| Отрицания закона непротиворечия
| Формальное противоречие
|
1. Двузначная классическая логика |
+ |
+ |
- |
- |
- |
2. Трехзначная логика Лукасевича |
- |
- |
- |
- |
- |
3. Трехзначная логика Рейтинга |
- |
+ |
- |
- |
- |
4. Трехзнач-ная логика Рейхенба-ха: а)цикличе-ское отрицание |
-
|
- |
- |
- |
- |
б) диаметраль-ное отрицание |
- |
- |
- |
- |
- |
в) полное отрицание |
+ |
+ |
- |
- |
- |
5. т-значная логика Поста: а)первое отрицание |
- |
- |
- |
- |
- |
б)второе отрицание | - | - | - | - | - |
6. Конструктив-ная логика Маркова |
- |
+ |
- |
- |
- |
7. Конструктив-ная логика Гливенко |
- |
+ |
- |
- |
- |
8. Конструктив-ная логика Колмогорова |
- |
+ |
- |
- |
- |
9. Интуиционистская логика Гейтинга |
- |
+ |
- |
- |
- |
истинным. Но так как для бесконечных множеств нет алгоритма распознавания, что является истинным: а или не-а, то конструктивная логика отвергает закон исключенного третьего в пределах конструктивной математики.
Итак, из таблицы видно, что формула a , соответствующая закону исключенного третьего, из рассмотренных 12 видов отрицания не является тавтологией, или доказуемой формулой, для 10 видов.
430
Специфика закона непротиворечия в неклассических логиках
В результате исследования 9 формализованных логических систем выявлено, что из 12 приведенных видов отрицания для 7 видов закон непротиворечия является тавтологией (или доказуемой формулой), для остальных же 5 закон непротиворечия тавтологией (доказуемой формулой) не является. По сравнению с законом исключенного третьего закон непротиворечия более устойчив.
Закон непротиворечия не является тавтологией во многих многозначных логиках. В классической, интуиционистской и конструктивных логиках закон непротиворечия, наоборот, признается неограниченно действующим. Причина в том, что в многозначных логиках число значений истинности может быть как конечным (большим 2), так и бесконечным. В логических системах, в которых отражена жесткая ситуация, “или - или” (истина - ложь), закон непротиворечия и закон исключенного третьего -тавтологии. Но это предельные случаи в познании (истина или ложь). Если же в процессе познания мы еще не достигли истины или еще не опровергли какое-либо утверждение (доказав его ложность), то нам приходится оперировать не истинными или ложными, а неопределенными суждениями.
Классическая двузначная логика должна быть дополнена многозначными логиками, в частности бесконечнозначной логикой, которая применима в процессе рассуждения об объектах, отражаемых в понятиях с нефиксированным объемом, и бесконечное число значений истинности которой лежит в интервале от 1 до 0. Совсем другие ситуации в познании отражены в конструктивных и интуиционистской логиках: конструктивный процесс или имеется (осуществляется), или его нет, но то и другое не может иметь места одновременно по отношению к одному и тому же конструктивному объекту или процессу, поэтому закон непротиворечия в этих логиках действует неограниченно. В конструктивных логиках приняты абстракции, отличные от тех, которые приняты в многозначных логиках. В конструктивных и интуиционистской логиках принимаются лишь два знамения истинности - истина и
431
ложь, доказуемо (выводимо) или недоказуемо (невыводимо), поэтому закон непротиворечия - выводимая формула.
Однако независимо от того, является ли закон непротиворечия в той или иной логической системе тавтологией или не является, сами логические системы строятся непротиворечиво:
иными словами, метатеория (металогика) построения формализованных систем подчиняется закону непротиворечия, иначе такие системы были бы бесполезными, так как в них было бы выводимо все что угодно - как истина, так и ложь.
Очень важным в гносеологическом и логическом плане результатом является то, что закон непротиворечия и закон исключенного третьего нельзя опровергнуть, так как отрицание этих законов ни в одной из известных форм, ни в одной из исследованных автором 18 логических системах не является тавтологией (или выводимой, доказуемой формулой), что свидетельствует об их фундаментальной роли в познании. Закон непротиворечия - один из основных законов правильного человеческого мышления - устойчив, его нельзя опровергнуть и заменить другим, в противном случае стерлось бы различие в познании между истиной как его целью и ложью.
Многообразие логических систем свидетельствует о развитии науки логики в целом и ее составных частей, в том числе теории основных фундаментальных формально-логических законов - закона непротиворечия и закона исключенного третьего.
- Глава X этапы развития логики как науки
- § 1. Краткие сведения из истории классической и неклассических логик
- Логика в Древней Индии
- Логика Древнего Китая
- Логика в Древней Греции
- Логика в средние века
- Логика эпохи Возрождения и Нового времени'
- Логика в России
- Математическая логика
- § 2. Развитие логики в связи с проблемой обоснования математики
- § 3. Интуиционистская логика
- § 4. Конструктивные логики
- Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- Конструктивная логика а. А. Маркова
- § 5. Многозначные логики
- Трехзначная система Лукасевнча
- Отрицание Лукасевича
- Трехзначная система Гейтинга
- Импликация Гейтинга
- Две бесконечнозначные системы Гетмановой:
- § 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- § 7. Модальные логики
- 1) P*qq*p;
- 4) (P*q)*rp*(q*r),
- 6)(Pq)*(qr) [pr};
- 7) P*(pq)q.
- § 8. Положительные логики
- § 9. Паранепротиворечивая логика