§ 8. Положительные логики
Положительные логики (сокращенно - ПЛ) - это логики, построенные без операции отрицания. Их можно разделить на два вида:
1) ПЛ в широком смысле слова, или квазипозитивные логики. Они построены без операции отрицания, но отрицание может быть выражено средствами их логических систем;
2) ПЛ в узком смысле слова. Они построены без операции отрицания, и отрицание не может быть выражено в их системах.
___________________________
'См.: Фейс Р. Модальная логика. М., 1974.
2Cм.: Ивин А. А. Основания логики оценок. М., 1970; его же. Логика норм. М„ 1973.
3См.: Слинин. Я. А. Современная модальная логика. Л., 1976.
4См.: Чендов Б. С. Логика на научного познание. Серия “Логика и применения”. София, 1992. Т. 2.
438
Можно предложить классификацию ПЛ и по другому основанию: числу логических операций, на котором построена ПЛ.
Квазипозитивными логиками, построенными на одной операции, являются логика, построенная на операции “штрих Шеффера” (антиконъюнкция), и логика, основанная на операции антидизъюнкции. Квазипозитивная логика, построенная на операции антидизъюнкции, которая соответствует сложному союзу “ни..., ни...” и обозначается аb (“ни а, ни b), таблично определена так:
а | b | ab |
И | И | Л |
И | Л | Л |
Л | И | Л |
Л | Л | И |
Ряд квазипозитивных логик основан на двух операциях. ПЛ в узком смысле, основанными на одной операции, являются импликативная логика, основанная на операции импликации, и логика, построенная на операции эквиваленции. Ряд ПЛ основан на двух операциях:
а) на импликации и конъюнкции;
б) на дизъюнкции и конъюнкции;
в) на импликации и дизъюнкции.
ПЛ (в узком смысле) является подсистемой (частичной системой) более сильных логик - интуиционистской и классической. Все утверждения ПЛ имеют силу как в интуиционистской логике, так и в классической логике. Внутри самих ПЛ также имеются различные по силе системы. Так, импликативная логика, включающая две аксиомы, слабее, чем ПЛ, включающая, кроме этих двух, аксиомы, характеризующие конъюнкцию и дизъюнкцию. Аксиоматическое построение подтверждает это соотношение: самой сильной является классическая логика, слабее интуиционистская, еще слабее ПЛ.
Общим для ПЛ в широком и узком смыслах является то, что среди логических констант этих систем нет операции отрицания.
439
Отличия этих систем следующие:
1) в квазипозитивных логиках операция отрицания выразима средствами этой логики, а в ПЛ в узком смысле операция отрицания не выразима;
2) квазипозитивные логики являются моделями классической логики, т.е. они эквивалентны классической логике высказываний, а ПЛ в узком смысле не эквиваленты классической логике, являясь ее подсистемами (частичными системами), следовательно, они слабее классической логики высказываний.
Роль ПЛ в искусственных языках весьма значительна. Особенно это касается конструктивной логики А. А. Маркова, которая строится на иерархии языков. В алфавите языка Я1, нет отрицания, и в нем нельзя выразить отрицание, ибо нет импликации. Марковым был построен язык Я1, который хотя и узок, но приспособлен для описания работы нормальных алгоритмов. Этот язык пригоден для выражения некоторых отношений между словами, встречающимися в чистой семиотике и в теории алгоритмов. С помощью языка Я1, (языка без отрицания) можно дать описание работы различных алгоритмов - и в этом состоит важное значение языка без операции отрицания.
Логическая система без операции логического отрицания находит свое применение при построении машинных программ. Но если взять искусственные языки - такие, как ФОРТРАН или КОБОЛ, которые позволяют воспользоваться высокоэффективным способом программирования, то в их состав, кроме логического сложения и логического умножения, входит и логическое отрицание, соответствующее частице “не” и обозначаемое знаком “ ”. Все инструкции о том, как произвести сборку замков, мебели, по использованию машин, инструментов, технических приборов и т. п. основаны на содержательном (не формализованном) использовании ПЛ.
- Глава X этапы развития логики как науки
- § 1. Краткие сведения из истории классической и неклассических логик
- Логика в Древней Индии
- Логика Древнего Китая
- Логика в Древней Греции
- Логика в средние века
- Логика эпохи Возрождения и Нового времени'
- Логика в России
- Математическая логика
- § 2. Развитие логики в связи с проблемой обоснования математики
- § 3. Интуиционистская логика
- § 4. Конструктивные логики
- Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- Конструктивная логика а. А. Маркова
- § 5. Многозначные логики
- Трехзначная система Лукасевнча
- Отрицание Лукасевича
- Трехзначная система Гейтинга
- Импликация Гейтинга
- Две бесконечнозначные системы Гетмановой:
- § 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- § 7. Модальные логики
- 1) P*qq*p;
- 4) (P*q)*rp*(q*r),
- 6)(Pq)*(qr) [pr};
- 7) P*(pq)q.
- § 8. Положительные логики
- § 9. Паранепротиворечивая логика