§ 9. Паранепротиворечивая логика
Эта логика представляет одно из направлений современной неклассической математической логики. Объективной основой появления паранепротиворечивых логик является стремление отразить средствами логики специфику мышления человека о
440
переходных состояниях, которые наряду с устойчивостью и относительным покоем наблюдаются в природе, обществе и познании. В природе и обществе происходят изменения, предметы и их свойства переходят в свою противоположность, поэтому нередки переходные состояния, промежуточные ситуации, неопределенность в познании, переход от незнания или неполного знания к более полному и точному. Действие законов двузначной логики - закона исключенного третьего и закона непротиворечия - в этих ситуациях ограничено или вообще исключено. На необщезначимость этих законов указывал еще Аристотель. Говоря о будущих единичных случайных событиях, по Аристотелю, нельзя считать суждение истинным или ложным, оно неопределенно.
Закон непротиворечия утверждает, что два противоположных суждения не могут быть истинными в одно и то же время и в одном и том же отношении. Но в разное время они могут быть оба истинными. Аристотель писал: “Все изменяющееся необходимо должно быть делимым... необходимо, чтобы часть изменяющегося предмета находилась в одном (состоянии), часть - в другом, так как невозможно сразу быть в обоих или ни в одном”'.
Вследствие неопределенности интервалов и неопределенности состояний изменяющегося предмета предполагается временная интервальная Паранепротиворечивая семантика, допускающая истинность как высказывания А, так и не-А. Кроме временных интервалов с переходными состояниями, наше мышление имеет дело с так называемыми нечеткими понятиями (нежесткими, расплывчатыми, размытыми –fuzzy), отражающими нежесткие множества, концепция которых предложена в 1965 г. американским математиком Л. Заде2. Все это обусловило необходимость и возможность появления паранепротиворечивых логик (paraconsistent logics) -логических исчислений, которые могут лежать в основе противоречивых формальных теорий. Противоречивые данные возникают на судебных заседаниях, в дискуссиях, полемике, при постановке диагноза болезни, в научных теориях (прежних и новых), в
_____________________________
'Аристотель. Физика // Соч.: в 4-х т. М., 1981.Т. 3. С.186-187.
2См.: Zadeh L. A. Fuzzy Sets// Information and Control. 1965. Vol.8. № 3.
441
ситуациях, связанных с решением нравственных проблем, в других сферах интеллектуальной деятельности. В связи с этим встала проблема создания информационной системы, работающей с противоречивыми данными.
Предшественниками паранепротиворечивой логики как нового вида неклассичесиой формальной логики явились логики Н. А. Васильева и Я. Лукасевича. Как новый вид математической логики паранепротиворечивая логика разрабатывалась в работах польского логика Ст. Яськовского (1948) и бразильского математика Ньютона да Коста (начиная с 1958 г.) История паранепротиворечивой логики изложена бразильским логиком А. И. Аррудой в работе “Обзор паранепротиворечивой логики. Математическая логика в Латинской Америке”'.
В паранепротиворечивых системах принцип (закон) непротиворечия лишен всеобщей значимости. Логике не присущи ни единство, ни абсолютность - эту мысль мы встречаем у многих современных логиков, в том числе у Н. да Косты. В статье, написанной специально для журнала “Философские науки”, “Философское значение паранепротиворечивой логики” Н. да Коста пишет: “Допустим, что имеющийся у нас язык дедуктивной теории Т содержит в себе символ отрицания. Т называют противоречивой (inconsistent) теорией, если и только если в Т имеются две теоремы, одна из которых есть отрицание другой; в противоположном случае Т считается непротиворечивой (consistent). Т считают тривиальной, если и только если все формулы (или все высказывания [sentences]) языка Т являются также теоремами Т; в противном случае мы называем Т нетривиальной... Система логики паранепротиворечива, если она может быть использована как логика, лежащая в основе противоречивых, но нетривиальных теорий”2. Н. да Коста полагает, что вместо стандартных теорий множеств могут быть использованы паранепротиворечивые теории множеств. Система паранепротиворечивой логики в общем случае должна удовлетворять следующим условиям:
_____________________
'См.: Arruda A. I. A Survey of Paraconsistent Logik: Mathematical Logik in Latin Americal (Ed. by Arruda A. I., Chuaqui R. and Da Casta N.C. A.) Dordrecht, 1980. P. 1-41.
2Философские науки. М., 1982. № 4. С. 117.
442
1) из двух противоречащих формул А и А в общем случае нельзя вывести произвольную формулу В;
2) дедуктивные средства классической логики должны быть максимально сохранены, поскольку они - основа всех обычных рассуждений. В первую очередь должен быть сохранен modus poaens, т. е. рассуждение по формуле ((а → b)^ а) → b.
Паранепротиворечивая логика связана со многими видами неклассических логик: с модальной логикой (системой S5 К. И. Льюиса), с многозначными логиками, с релевантной логикой, где тоже не принимается принцип: из противоречия следует все, что угодно'. Исследование многозначных логик показало, что закон непротиворечия, т. е. формула , не является тавтологией в следующих системах: трехзначных логиках - Я. Лукасевича, Г. Рейхенбаха (для циклического и диаметрального отрицаний), Р. П. Гудстейна, Д. Бочвара (для внутреннего отрицания); т-значной логике Э. Л. Поста. Автор этого учебника исследовала 13 формализованных логических систем с 17 имеющимися в них видами отрицания и установила, что для 10 видов закон непротиворечия является тавтологией (доказуемой формулой), а для остальных 7 нет. Это обусловлено тем, что, кроме значений истинности - “истина” и “ложь”, в многозначных логиках имеется значение “неопределенно”. Но в классической, конструктивных и интуиционистской логиках от закона непротиворечия нельзя отказаться, ибо в этих логиках отражены жесткие ситуации “или - или” (“истина - ложь”), конструктивный процесс присутствует или его нет, одновременно того и другого не бывает. Поэтому классическая, интуиционистская, конструктивная и ряд других логик не годятся в качестве логик, которые могут быть основанием противоречивых, но нетривиальных теорий. Положительные логики также для этого не годятся, ибо в них нет операции отрицания. Некоторое современные логики (например, немецкий логик К. Вессель) не признают паранепротиворечивых логик. Построением паранепротиворечивых логических систем занимаются, однако, отечественные логики А. С. Карпенко, А. Т. Ишмурагов и др.
Интересны и оригинальны статьи американского математика Н. Белнапа “Как нужно рассуждать компьютеру” (1976) и “Об
________________________
'См.: Табаков Мартин. Логика и аксиоматика. София, 1986.
443
одной полезной четырехзначной логике” (1976), посвященные формализации общения с информационными системами, в которых содержится противоречивая информация. Белнап построил четырехзначную логику, значениями истинности которой являются следующие: Т - “говорит только Истину”; F - “говорит только Ложь”; None - “Не говорит ни Истины, ни Лжи”; Both -“говорит и Истину, и Ложь”'. Н. Белнап отмечает, что входные данные поступают в компьютер из нескольких независимых источников, и в таких условиях проявляется типичная особенность информационной ситуации - угроза противоречивости информации. Что в таком случае должен делать компьютер, особенно если в системе содержится необнаруженное противоречие? Свою четырехзначную логику Белнап и предлагает в качестве практического руководства в рассуждениях2.
Итак, паранепротиворечивые логики демонстрируют возможность наличия очень сильных противоречивых, но нетривиальных (т. е. паранепротиворечивых) теорий.
___________________________
'Белнап Н.. Стил Т. Логика вопросов и ответов. М., 1981. С. 214.
2'См.: там же. С. 208-215.
444
- Глава X этапы развития логики как науки
- § 1. Краткие сведения из истории классической и неклассических логик
- Логика в Древней Индии
- Логика Древнего Китая
- Логика в Древней Греции
- Логика в средние века
- Логика эпохи Возрождения и Нового времени'
- Логика в России
- Математическая логика
- § 2. Развитие логики в связи с проблемой обоснования математики
- § 3. Интуиционистская логика
- § 4. Конструктивные логики
- Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- Конструктивная логика а. А. Маркова
- § 5. Многозначные логики
- Трехзначная система Лукасевнча
- Отрицание Лукасевича
- Трехзначная система Гейтинга
- Импликация Гейтинга
- Две бесконечнозначные системы Гетмановой:
- § 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- § 7. Модальные логики
- 1) P*qq*p;
- 4) (P*q)*rp*(q*r),
- 6)(Pq)*(qr) [pr};
- 7) P*(pq)q.
- § 8. Положительные логики
- § 9. Паранепротиворечивая логика