7) P*(pq)q.
Аксиома 5 может быть выведена из остальных, как было показано позднее. Так как конъюнкция связывает “сильнее”, чем импликация, то скобки можно опустить или заменить их точками; как это сделано у Льюиса.
III. Правила вывода S1:
1) Правило подстановки. Любые два эквивалентных друг другу выражения взаимозаменимы.
2) Любая правильно построенная формула может быть подставлена вместо р, или q. или r и т. д. в любом выражении.
3) Если выводим о р и выводим о q, то выводимо р • q .
4) Если выводим о р и выводим о р q , то выводимо q.
Льюис построил модальную пропозициональную логику S1 в виде расширения немодального (ассерторического) пропозиционального исчисления. При этом основные черты S1 и других его исчислений были скопированы с формализованной логической системы Principia Mathematica Рассела и Уайтхеда, сформулированы с помощью понятий, только терминологически отличающихся от понятий, использованных в Principia Mathematica. Кроме Рассела и Уайтхеда, идеи классической логики развивали многие современные математические логики, например, американский логик и математик С. Клини'. Исчисления Льюиса по-
____________________________
'Kleene S. С. Mathematical Logik. New York - London - Sydney, 1967.
435
строены аксиоматически по образцу Principia, и по аналогии с Principia Льюис доказывает ряд специфических теорем.
В классической двузначной логике логическое следование отождествляется с материальной импликацией и допускаются такие формы вывода:
p→ (q→p). (1)
т. е. истинное суждение следует из любого суждения (“истина следует откуда угодно”),
p→(→q)(2)
т. е. из ложного суждения следует любое суждение (“из лжи следует все, что угодно”). Это противоречит нашему содержательному, практическому пониманию логического следования, поэтому данные формулы, как и некоторые другие, и соответствующие им принципы логического следования называются парадоксами материальной импликации.
Льюис создал свои новые системы с целью избежать этих парадоксов и ввести новую импликацию, названную им “строгой импликацией”, такую, чтобы логическое следование представлялось не чисто формально, а по смыслу (содержательно) и новая импликация была ближе к связке естественного языка “если, то”. В строгой импликации Льюиса рq невозможно утверждать антецедент, т. е. р, и отрицать консеквент, т. е. q 1.
В системах Льюиса были устранены парадоксы материальной импликации, т.е. формулы (1) и (2) стали невыводимыми, но появились парадоксы строгой импликации. К ним относятся, например, такие формулы:
(~ ◊ ~p)(q p) (3)
(~ ◊ p) (p q) (4)
Итак, отождествлять строгую импликацию Льюиса со следованием нельзя.
________________________
'Антецендент - первый член импликации, которому предпослано слово “если”. Консеквент - второй член импликации
436
С целью исключить парадоксы строгой импликации Льюиса немецкий математик и логик Ф. В. Аккерман (1896 -1962) построил свою систему модальной логики. Он ввел так называемую сильную импликацию, которая не тождественна строгой импликации Льюиса, и модальные операторы Аккермана и Льюиса также не являются тождественными. Аккерман все логические термины и модальные операторы определяет через сильную импликацию так: NA равносильно →λ, МА равносильно. Здесь А - любая правильно построенная формула системы Аккермана; N- оператор необходимости; М- оператор возможности; -отрицание A; → обозначает сильную импликацию; -логическая постоянная, обозначающая “абсурдно”. Эта постоянная в свою очередь определяется так: А&, где & обозначает конъюнкцию. И последняя формула читается так: из противоречия, т. е. А и не-А, следует абсурд. В системе Аккермана не выводятся формулы, структурно подобные парадоксам материальной или строгой импликации.
Системы Льюиса и Аккермана являются бесконечнозначными. В отличие от этих систем первоначально построенные системы Лукасевича являются конечнозначными: одна - трехзначная (1920), другая - четырехзначная (1953). В четырехзначной системе Лукасевича1 также обнаружены парадоксы. Главный из них состоит в том, что ни одно аподиктическое предложение не истинно, т. е. ни одно суждение вида L (где L обозначает необходимость, а - любая формула) не является истинным. Это означало бы, что необходимых суждений нет, т. е. модальный оператор “необходимо” упраздняется. Лукасевич пишет: “Любое аподиктическое предложение должно быть отброшено”2. Сам Лукасевич считал это достоинством своей системы, а понятие “необходимость” - псевдопонятием. С такой точкой зрения, конечно, согласиться нельзя.
Интерпретации модальных логик различны. Известный австрийский философ и логик Р. Карнап (1891-1970) пытался интерпретировать модальные понятия (операторы) с помощью так
____________________________
'См.' Lukasiewicz J. Aristotle's Syllogistic from the Standpoint of Modem Formal Logik. Clarendon Press. Oxford, 19S7. Ch. VII; Лукасевич Я. Аристотелевская силлогистика с точки зрения современной формальной логики. М., 1959.
4bid. Ch. VII. § 50.
437
называемой теории “возможных миров”, в которой допускается наличие множества “миров”, один из которых -действительный, реальный мир, а остальные - возможные миры. Необходимым объявляется то, что существует во всех мирах, возможным - то, что существует хотя бы в одном.
Р. Карнап в 1946 г., используя понятие “описание состояния”, предложил интерпретацию модальных операторов, в основе которой лежала идея различия возможного и действительного мира.
В ином направлении шел финский логик Я. Хинтикка. Критически переосмыслив введенное Карнапом понятие “описание состояния”, он разработал технику “модальных множеств”, т. е. миров (1957), - оригинальную семантическую концепцию возможных миров. Разработка семантики возможных миров для модальных логик продолжается.
Разнообразными проблемами модальной логики занимается американский логик Р. Фейс'.
В настоящее время разработаны многие виды модальностей, которые отражены в таблице, помещенной на с. 97 данного учебника.
Теорией модальных логик и построением новых модальных логических систем активно занимаются логики А. А. Ивин2, Я. А. Слинин3, Б. С. Чендов4,0. Ф. Серебряников, В. Т. Павлов и др.
- Глава X этапы развития логики как науки
- § 1. Краткие сведения из истории классической и неклассических логик
- Логика в Древней Индии
- Логика Древнего Китая
- Логика в Древней Греции
- Логика в средние века
- Логика эпохи Возрождения и Нового времени'
- Логика в России
- Математическая логика
- § 2. Развитие логики в связи с проблемой обоснования математики
- § 3. Интуиционистская логика
- § 4. Конструктивные логики
- Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- Конструктивная логика а. А. Маркова
- § 5. Многозначные логики
- Трехзначная система Лукасевнча
- Отрицание Лукасевича
- Трехзначная система Гейтинга
- Импликация Гейтинга
- Две бесконечнозначные системы Гетмановой:
- § 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- § 7. Модальные логики
- 1) P*qq*p;
- 4) (P*q)*rp*(q*r),
- 6)(Pq)*(qr) [pr};
- 7) P*(pq)q.
- § 8. Положительные логики
- § 9. Паранепротиворечивая логика