Диаграммы Вейча–Карно
Диаграмма Вейча - Карно представляет собой плоскую карту, на которой положение каждой ячейки определяется системой горизонтальных и вертикальных координат. Система координат вводится таким образом, чтобы при переходе от любой ячейки карты к любой другой, соседней с ней слева или справа, сверху или снизу ячейке, происходила бы смена только одной какой-нибудь координаты.
В каждую ячейку такой карты записывается значение функции на наборе, соответствующем координатам ячейки. Такие карты могут использоваться для представления функций, число переменных у которых не более 8. Очевидно, что для каждой булевой функции карта Карно заполняется единственным образом. И по заполненной карте Карно функция восстанавливается также однозначно. Структура и разметка карты для функций двух, трёх и четырёх переменных показана на рисунке 8.
|
|
| y z |
| |||||
|
| 00 | 01 | 11 | 10 | ||||
x | 0 | f(0,0,0) | f(0,0,1) | f(0,1,1) | f(0,1,0) | ||||
1 | f(1,0,0) | f(1,0,1) | f(1,1,1) | f(1,1,0) |
|
| y | |
|
| 0 | 1 |
x | 0 | f(0,0) | f(0,1) |
1 | f(1,0) | f(1,1) |
-
z w
00
01
11
10
00
f(0,0,0,0)
f(0,0,0,1)
f(0,0,1,1)
f(0,0,1,0)
x
01
f(0,1,0,0)
f(0,1,0,1)
f(0,1,1,1)
f(0,1,1,0)
y
11
f(1,1,0,0)
f(1,1,0,1)
f(1,1,1,1)
f(1,1,1,0)
10
f(1,0,0,0)
f(1,0,0,1)
f(1,0,1,1)
f(1,0,1,0)
Рис. 8
По карте легко строится СДНФ и СКНФ функции f(x1,x2,...,xn): каждой ячейке с единицей соответствует элементарная конъюнкция ранга n – , где 1,…,n – набор, отвечающий координатам ячейки, а каждой ячейке с нулем (пустой ячейке) соответствует элементарная дизъюнкция ранга n: .
|
|
| y z |
| ||
|
| 00 | 01 | 11 | 10 | |
x | 0 |
| 1 | 1 |
| |
1 | 1 |
|
| 1 | ||
|
| Таблица 26 |
|
Для функции трех переменных, заданной картой Карно, приведенной в таблице 26, СДНФ =
СКНФ =
Ячейку карты можно рассматривать, как прямоугольную группу размера 2020, и ранг соответствующей элементарной конъюнкции (дизъюнкции) r = n – 0 – 0.
Легко показать, что каждой прямоугольной группе соседних ячеек с единицами, размера 2a2b, соответствует элементарная конъюнкция (дизъюнкция) ранга (n ‑ a ‑ b). Для подтверждения этого рассмотрим карту функции в таблице 26. Две соседних ячейки с единицами в верхней строке таблицы образуют прямоугольную группу, размера 2021, поэтому соответствующая этой группе элементарная конъюнкция должна иметь ранг 3 – 1 – 0 = 2. Рассмотрим дизъюнкцию элементарных конъюнкций, соответствующих каждой из этих двух ячеек: . Выполним преобразования в этой формуле: . В результате преобразований получена конъюнкция 2‑го ранга. Теперь рассмотрим две соседних ячейки с нулями (пустые) в нижней строке той же таблицы. Конъюнкция двух элементарных дизъюнкций, соответствующих этим ячейкам: после преобразований запишется в виде элементарной дизъюнкции 2‑го ранга: .
Несложно сформулировать правило, позволяющее записать элементарную конъюнкцию (дизъюнкцию), соответствующую прямоугольной группе соседних ячеек с единицами (нулями), размера 2a2b. А именно: для записи элементарной конъюнкции надо воспользоваться разметкой координатных осей карты. Множители конъюнкции определяются неизменными координатами в данной группе ячеек, при этом множитель будет входить в конъюнкцию с отрицанием, если соответствующая ему координата равна нулю в этой группе ячеек, и без отрицания, если она равна единице. Для записи элементарной дизъюнкции также используются неизменные координаты рассматриваемой группы ячеек. Слагаемое будет входить в дизъюнкцию с отрицанием, если соответствующая ему координата равна единице, и без отрицания, если она равна нулю в этой группе ячеек.
Подтвердим сказанное примерами.
|
|
| z w |
|
|
|
| 00 | 01 | 11 | 10 |
| 00 |
| 1 | 1 | 1 |
x | 01 |
| 1 | 1 | 1 |
y | 11 | 1 | 1 |
|
|
| 10 |
| 1 |
|
|
Таблица 27
В таблице 27 приведена карта Карно функции четырех переменных. Вертикальной группе соседних ячеек с единицами (второй столбец таблицы), размера 2220, соответствует элементарная конъюнкция 2‑го ранга K =.
Группе ячеек с единицами в правом верхнем углу таблицы, размером 2121, соответствует элементарная конъюнкция K =.
Группе из двух единиц слева в третьей строке таблицы, размером 2021, соответствует элементарная конъюнкция 3‑го ранга K = .
Двум пустым ячейкам в левом верхнем углу таблицы соответствует элементарная дизъюнкция 3‑го ранга: .
И, наконец, группе из четырех пустых ячеек в правом нижнем углу карты соответствует элементарная дизъюнкция 2‑го ранга: .
|
|
| y z |
| ||
|
| 00 | 01 | 11 | 10 | |
x | 0 | 1 |
|
| 1 | |
1 |
|
|
|
| ||
|
| Таблица 28 |
|
На картах с четырьмя переменными при формировании групп склеенными следует считать также верхний и нижний края. Таким образом, карта с четырьмя переменными рассматривается как поверхность тора. Прямоугольные группы, формируемые на торе также могут оказаться разорванными на плоском рисунке. Но правило для записи элементарной конъюнкции (дизъюнкции) остается тем же.
|
|
| z w |
|
|
|
| 00 | 01 | 11 | 10 |
| 00 | 1 |
|
| 1 |
y | 01 |
|
|
|
|
x | 11 |
|
|
|
|
| 10 | 1 |
|
| 1 |
|
| Таблица 29 |
|
|
| z w |
|
|
|
| 00 | 01 | 11 | 10 |
| 00 |
| 1 |
|
|
y | 01 | 1 |
|
| 1 |
x | 11 | 1 |
|
| 1 |
| 10 |
| 1 |
|
|
|
| Таблица 30 |
Таким образом, для карты функции четырех переменных, представленной в таблице 29, соответствующая элементарная конъюнкция K =.
Для карты в таблице 30 конъюнкция, соответствующая группе из четырех единиц, K = и группе из двух единиц – K =.
Yandex.RTB R-A-252273-3- Часть II
- Алгебра двузначной логики
- Функции алгебры логики
- Способы задания функций алгебры логики
- Эквивалентность функций
- Реализация функций формулами
- Эквивалентность формул и тождества
- Упрощение формул
- Двойственные функции и принцип двойственности
- Применение принципа двойственности
- Аналитическая запись функций алгебры логики
- Аналитическое построение сднф и скнф
- Теорема о тройке связок
- Полные системы функций и полиномы Жегалкина
- Замыкание систем функций алгебры логики
- Важнейшие замкнутые классы
- Теорема Поста о полноте
- Минимизация булевых функций
- Основные понятия
- Метод неопределенных коэффициентов
- Тупиковые днф и алгоритм наискорейшего спуска
- Геометрическое представление функций алгебры логики
- Аналитическое построение сокращенной днф
- Локальные алгоритмы
- Алгоритм Куайна
- Диаграммы Вейча–Карно
- Построение днф по карте Карно
- Задачи и упражнения
- Список литературы
- Часть II
- 400131, Волгоград, просп. Им. В.И.Ленина, 28
- 400131, Волгоград, ул. Советская, 35