9. Инфинитезимальные процессы
Выше уже говорилось, что античные атомы находятся в непрерывном движении и функционально связаны между собой. Что это за непрерывность и функциональность? Античные атомисты находятся еще на такой наивной ступени мышления, когда такого рода вопросы ставятся, главным образом, интуитивно. В те времена еще не входили в подробный анализ такого рода проблем и не создавали для них точного логического аппарата. Говорилось, например, просто о сцеплении или захвате атомов (Маков. 48. 54. 76), причем сцепление понималось весьма наивно, как результат крючковатой (Маков. 291) или вообще изогнутой формы атомов. Говорилось также о трясении атомов во всех направлениях (Маков. 79). И вместе с тем признание таких глубочайших факторов, как непрерывность и функциональность, приводило (конечно, тоже еще в интуитивной и мало расчлененной форме) к выводам огромной теоретической важности. Ведь если u есть функция от х, то при условии непрерывности этой функции и в условиях образования все новой и новой качественности в каждый момент изменения u и х, т.е. в условиях возможности, трактовать каждый момент изменения как предел всех предыдущих моментов их изменения, мы имеем дело уже с инфинитезимальными представлениями. Мы должны теперь рассматривать каждый атом как дифференциал того или другого качества, получаемый в результате его непрерывного движения в зависимости от какого-нибудь другого или многих других атомов; а сложное тело мы тем самым должны рассматривать как интеграл, возникающий в результате непрерывного становления образующих его элементов. Либо нужно расстаться с представлением античных атомистов о нераздельности материи и движения и о закономерности этого движения, либо мы должны заключить, что античные атомисты в интуитивной и мало расчлененной форме уже оперировали понятиями дифференциала, интеграла и производной.
Начатки математического анализа в греческой атомистике констатируются уже издавна. Можно указать, например, работу M.Simon "Geschichte der Mathematik im Altertum" Berl., 1909. Здесь доказывается, что атом Демокрита есть дифференциал массы, что объем тела у него есть "интеграл, сумма бесконечно малых призм", что Демокрит, во всяком случае, занимался проблемой непрерывности (на это указывает название не дошедшего до нас его сочинения "Об иррациональных отрезках прямой и континууме, nastzn", что метод Демокрита напоминает Кавальери и что Демокрит пока еще не смог "доказать" правильности и необходимости применения инфинитезимального метода, но он его уже "указал", что Демокрит "соединил" учение пифагорейцев о пустоте, Эмпедокла - о порах и Анаксагора - о бесконечно малых в общее учение о дифференциале массы, пространства и движения. И.Л.Гейберг тоже пишет о Демокрите: "...многое заставляет предполагать в нем предшественника Архимеда в области исчисления бесконечно малых"99. Необходимо указать также на работу R.Phillppson "Democritea" ("Hermes", 64 Bd. 1929, стр. 175 - 183), где тоже устанавливается наличие у Демокрита учения о бесконечно малых. Новейшей в этой области является работа J.Mau "Zum Problem des Infinitesimalen bei den antiken Atomisten", Berl., 1957, где в убедительной форме доказывается наличие идеи бесконечно малых у греческих атомистов и обсуждается полемика последних с элеатами.
Не обошлось также и без возражений. E.Hoppe в специальной статье "Die Entwicklung des Infinitesimalbegriffs" (Philologus, Berl., 76, 1920, стр. 355 - 359) доказывает, на основании известного текста Плутарха, что Демокрит, разделяя конус на параллельные пластинки, не смог получить образующей конуса в виде прямой линии и что, следовательно, понятия дифференциала и интеграла были ему чужды. Открытие бесконечно малых E.Hoppe приписывает Платону, используя учение последнего о беспредельном в "Филебе" (17 А, 18 А, 24 А, 25 В, 27 1"). Возражал против идеи бесконечно малых у атомистов и E.Frank в работе "Plato und die sogenannten Pythagoreer".
В советской науке С.Я.Лурье в своих многочисленных работах рассматривал учение греческих атомистов с точки зрения математического анализа, подвергая обстоятельной критике дошедшие до нас источники по этому вопросу. Здесь мы укажем основной труд С.Я.Лурье из этой области "Теория бесконечно малых у древних атомистов" (М. - Л., 1935)100. Вопроса о бесконечно малых у атомистов кратко касается и А.О.Маковельский в "Древнегреческих атомистах" (Баку, 1946), И.Г.Башмакова в своих "Лекциях по истории математики в древней Греции" ("Историко-математические исследования", вып. ХI, под ред. Г.Ф.Рыбкина и А.П.Юшкевича. М., 1958, стр. 331). Учитывая те трудности, которые возникали у Демокрита в его учении о конечной делимости на путях математического анализа, она совершенно правильно пишет: "И все же в концепции Демокрита содержалась чрезвычайно плодотворная мысль, которая впервые по-настоящему была оценена только Архимедом. Мы говорим о выдвинутом им принципе составления тел из большого числа маленьких частиц, размеры которых известны. В этом можно видеть зародышевую формулу интеграционных методов". Необходимо, наконец, указать на весьма ценное освещение математической проблематики у Демокрита, данное В.Ф.Асмусом в его работе "Демокрит" (М., 1960, стр. 35 - 41).
- 2. Классические системы философии
- 3. Существенные уточнения
- 2. Принцип античного гения
- 3. Формула Гегеля
- 4. Свободнорожденные
- 5. Античность и прогресс
- 6. Необходимые оговорки
- 7. Точность в науке о греческой культуре
- 2. Красота в природе
- 3. Общий взгляд античности на искусство
- 4. Вопрос об эстетике как о самостоятельной науке в античности
- 5. Современная оценка античной эстетики
- 2. Ранняя рабовладельческая формация
- 3. Рабовладельческая развитая формация
- 4. Три стадии античного рабовладельческого общества. Классическое эллинство
- 5. Ранний эллинизм
- 6. Поздний эллинизм и всемирно-римская ступень
- 7. Заключение
- 2. Природа в гомеровских сравнениях
- 565 В этих местах человека легчайшая жизнь ожидает.
- 6. О некоторых отдельных эстетических категориях, относящихся к природе и космосу
- 2. Земледелие
- 3. Скотоводство
- 4. Обработка материалов, кроме металлов
- 5. Обработка металлов33
- 6. Оружие
- 7. Прядильно-ткацкое производство и одежда
- 8. Жилище
- 9. Общие выводы об изображении трудовой деятельности у Гомера
- 10. Общая характеристика индивидуального человека
- 11. Наружность человека
- 2. Изобразительные искусства
- 3. Мусические искусства
- 4. Нераздельность искусства, природы, ремесла, науки и жизни
- 5. Материалы о красоте вообще
- 6. Сущность красоты вообще по Гомеру
- 7. Социально-историческая основа гомеровского представления о красоте
- 4. Исторические и библиографические дополнения к Гомеру
- 1. Гомер и археология
- 2. Гомеровские словари
- 3. Диалектный состав гомеровского языка и его литературно-эстетическое значение
- 4. Гомер и историко-эстетическое развитие
- 5. Из литературы о гомеровских сравнениях
- 6. Вопросы общего изложения Гомера
- 7. Популярные изложения гомеровского вопроса
- 1. Историческое развитие периода
- 2. Три основных периода античной классической эстетики
- 3. Ранняя классическая эстетика в ее историческом развитии
- I. Эстетика конечных числовых структур, древнее пифагорейство
- 1. Основное учение о числовой структуре
- 1. Необходимость учета специфики
- 3. Понятие о числовой гармонии
- 4. Резюме о музыкальной эстетике
- 2. Платоновские тексты о пропорциях, не имеющие прямого отношения к эстетике
- 3. Пропорции, физические элементы и геометрические тела
- 4. Музыкальные пропорции
- 5. Общая сводка
- 6. Гносеологическая пропорция
- 2. Структурные понятия и термины
- 3. Художественно-технические понятия и термины
- 2. Исходный пункт
- 3. Симметрия живого тела
- 4. Понятие центра
- 5. "Квадратный" стиль
- 6. Вопрос о числовых данных
- 7. Культурно-стилевая оценка "Канона" Поликлета
- 2. Ум как принцип красоты и порядка
- 3. Предполагаемое учение о красоте, жизни и смерти
- 2. Бесконечность и ее типы
- 3. Определение гомеомерии
- 2. Отдельные представители элейской школы
- 3. Эстетический смысл элейской философии
- 2. Эстетический смысл учения милетцев
- 2. Возможность разных подходов
- 2. Трагический хаос противоположностей не исключает светлого космоса
- 2. Отсутствие отвлеченных построений у Гераклита
- 3. Черты синтетизма
- 4. В поисках специфики Гераклита
- 1. Некоторые основные особенности творчества Гераклита
- 2. Аристократизм и демократизм
- 2. Наиболее вероятный спецификум
- 3. Итог эстетической картины мира
- 6. Подражатели и последователи Гераклита
- 1. Псевдо-Гиппократ
- 2. Кратил
- 3. Эпихарм
- 2. "Любовь" и "Вражда"
- 2. Эстетический субъект
- 3. Пропорциональность
- 4. Гармонически-пропорциональная природа эстетического сознания
- 5. Учение о цвете
- 2. Связь со стихиями
- 2. Структура и континуум как предельные категории
- 3. Природа пустоты и движения в ней у атомистов
- 4. Эстетическая переработка античной философии, античного космологизма и атомизма
- 2. Учение об индивидууме (атоме); наука и конец досократики
- 2. Бесконечная качественность атомов
- 3. Геометрическая или вообще числовая структура
- 4. Физико-геометрическая природа
- 5. Предел
- 6. Движение атома
- 7. "Сумма" и "целое"
- 8. Двоякое понимание атома
- 9. Инфинитезимальные процессы
- 10. Критика неправильных интерпретаций
- 3. Основной принцип атомизма
- 4. Атомистическая диалектика и возникающая на ее основе эстетика
- 1. Атом - субъект и объект определения
- 2. Физика и геометрия
- 3. Атом и его эманации
- 4. Бытие и небытие
- 5. Атомы и их движение
- 6. Необходимость и свобода. Хаос и космос
- 7. Целое и части
- 8. Познание и бытие
- 9. Наиболее яркое выражение натурфилософской эстетики Демокрита
- 2. Переход к специальной эстетике. Индивидуально-скульптурная точка зрения
- 2. Эстетический субъект и художник
- 3. Происхождение искусств и языка
- 2. Принципы античного цветоведения
- 3. Aтомизм
- 4. Характеристика отдельных цветов
- 5. Случайность и путаница аналогий
- 6. Эстетическое значение теории цветов у Демокрита
- 1. Мифология, натурфилософия, антропология
- 2. Разложение натурфилософии
- 2. Живой организм - основа античной эстетики
- 3. Общественно-историческая практика, лежащая в основе античной эстетики
- 3. Число и живой организм
- 4. Скульптурный и гражданственно-полисный характер числа
- 2. Тождество идеального и реального, но с приматом реального
- 3. Материально-чувственный и математически-интуитивный принцип
- 4. Античный и современный диалектический материализм
- 5. Диалектика, или единство и борьба противоположностей
- 2. Особенности структуры
- 3. Формы структуры
- 4. Соотношение эстетической структуры и эстетической действительности
- 5. Абсолютная эстетическая действительность
- 1. Первообраз и подражание
- 2. Судьба, боги, космос и человек
- 4. Космос как совершеннейшее произведение искусства.
- 2. Социально-историческая основа
- 3. Поэтические формулы
- 4. Разложение
- 2. Общие труды по античной философии (русские и переводные)
- 3. Общие труды по античной философии (иностранные)
- 2. Общие труды по античной эстетике
- 2. Частная терминология
- 5. Области, соседние с эстетикой и часто прямо в нее переходящие
- 1. Эстетика и общее миропонимание
- 2. Эстетика и мифология
- 3. Миф и логос
- 6. Природа и космос
- 7. Пространство, время и движение
- 10. Эстетика и учение об уме
- 11. Эстетика и этика
- 12. Эстетика, логика и диалектика
- 13. Историческое и человеческое
- 14. Эстетика и математика (число, величина и единое)