logo
Лосев

7. Культурно-стилевая оценка "Канона" Поликлета

Предыдущие тексты дают исчерпывающий филологический материал по канону Поликлета. Вместе с тем мы уже дали и общую оценку этого канона. Сформулируем теперь в обобщенном виде то, что можно было сказать о культурно-стилевом характере этого явления в целом.

а)

Прежде всего в эпоху классического идеала понимать канон чисто арифметически и вычислительно было невозможно. Чистая арифметически-вычислительная методика характеризует эпохи гораздо более мелкого подхода к искусству, эпохи внешнетехнического отношения к нему на основе бессильно-рационалистической импотентной настроенности субъекта, лишенного крупных идей.

Классическое эллинство гораздо более энергично и мощно, гораздо более онтологично. Числовое оформление для него есть также бытийственное оформление, число здесь вещественно или, по крайней мере, бытийственно. Вот почему числа этого канона не могут быть счетными количествами в нашем смысле слова. Эти числа являются тут субстанциями, живыми силами, вещественно-смысловыми энергиями. Такова вообще вся природа классического идеала. Интересно, что легкий налет этого философского онтологизма и динамизма лежит даже на позитивистских в своем существе числовых рассуждениях и операциях теоретиков эпохи Возрождения.

Классика там, где есть некоторая абстрактность, целомудренное воздержание от разврата, психологизма и натурализма, нечто общее или всеобщее, бегущее сумбура и бесконечного хаоса, частностей и случайностей, т.е. чисто числовое, математическое, геометрическое, структурно-эйдетическое. Но классика в то же время там, где эта абстрактная всеобщность не есть только логика и система чисто рассудочных схем, а где она сама есть некая вещь, субстанция, некая живая сила и творческая мощь. Всмотримся в "классическое искусство" безразлично какой культуры, античной ли V в., или новоевропейской эпохи Возрождения. Почему классические формы так солидны, увесисты, крепки и основательны? Почему их красота, стройность, холодноватая величавость, или, как мы выражаемся, абстрактная всеобщность, так бытийственна, устойчива, фундаментальна? Именно потому, что под этими числовыми симметриями кроется чувство онтологизма числа, чувство вещественности всякой смысловой, а значит, и числовой структуры. Вот почему Поликлет создает самую статую "Канон", самую, так сказать, вещественную субстанцию числового канона. Вот почему также если, не прямо сам Поликлет, то, во всяком случае, современные ему пифагорийцы дают онтологически-энергетическое обоснование для всех числовых операций тогдашних художественных канонов.

б)

Нетрудно заметить сходство в понимании самой природы числовой симметрии у Поликлета и у пифагорейцев. Тексты, приведенные выше по Поликлету, свидетельствуют о том, что пропорции мыслятся им не механически, а органически: они исходят из естественной симметрии живого человеческого тела и фиксируют в нем то, что является наиболее нормальным. Не иначе поступают с своими числами и пифагорейцы, которые тоже исходят из некоторого телесного космоса, как он им представлялся в виде небесных сфер, и закрепляют те его числовые соотношения, которые казались тогда для него нормальными. Конечно, соотношения эти, в соответствии с эпохой, являются абстрактно-всеобщими и поэтому в значительной мере априорными. Тем не менее они - при всем априоризме своего содержания - мыслились вполне реальными. Если числовая симметрия не помешала Мирону выразить в "Дискоболе" напряжение тела в момент бросания диска, а Поликлету в его "Дорифоре" - хиазм ног и плеч, т.е., кроме симметрии, соблюсти также и "эвритмию", то и пифагорейский космос содержит не только определенную живую схематику, но и реальный ритм расположения небесных светил (как он тогда представлялся).

в)

В связи с онтологией чисел необходимо отдать должную дань и самому понятию канона. Это понятие характерно как раз для классического идеала в искусстве. Ведь это искусство живет абстрактно-всеобщим, т.е., прежде всего, числовыми формами, понимая эти числа не арифметически-вычислительно, а реально-онтологически. Но это и значит, что числовые схемы обладают здесь непреложной значимостью и являются именно каноном. Так, мы видим, что самое понятие канона содержит в себе нечто вещественно-смысловое, или, точнее, вещественно-числовое, т.е. пифагорейское. Учитывая это, числовые данные Поликлетова канона следует строжайше отделять ох позднейших пропорций, т.е. прежде всего от эллинистических, например, от лисипповых (поскольку Лисиппа надо считать художником восходящего эллинизма).

В эллинизме появляется понятие, совершенно чуждое классике, - понятие "природы"51. В чем смысл этого нового, по сравнению с классикой, понятия, хорошо показал живописец Эвпомп, основатель Сикионской школы. На вопрос о том, кому он следовал из своих предшественников, он указал на толпу людей и заявил, что нужно подражать природе, а не художнику (Plin. ХХХIV19). Поворот к натурализму наметился уже у Праксителя. Он изобразил "ликующую гетеру", относительно которой думают, что "она представляла собою Фрину", любовницу самого Праксителя (ibid. 70). А вот рассказ о подчеркнутом "реализме" живописца IV в. Зевксиса: "...Вообще же он обнаруживал такую тщательность, что, собираясь нарисовать для жителей Агригента картину, которую они на общественный счет сооружали для храма Юноны Лацинии, он осмотрел в обнаженном виде их дев и выбрал из них пять, чтобы воспроизвести на картине то, что у каждой из них в отдельности было им одобрено" (Там же, 64)52.

Здесь перед нами принципиально новая, неклассическая установка художественного сознания. И хотя художники восходящего эллинизма не могут обойтись без некоторого априоризма (ибо Зевксис производил отбор "природных" фактов на основании каких-то отнюдь не эмпирических принципов), все же каноном тут являются эмпирически наблюдаемые размеры и пропорции, а не априорные числовые спекуляции (хотя бы и близкие к "действительности"). В результате всего этого отпадает надобность и в самом каноне.

Поликлет при всей своей жизненности и человечности гораздо более априористичен, чем Лисипп и эллинизм. Но если мы примем во внимание, что под эмпиризмом типа Зевксиса стоит более самостоятельный в своих ощущениях субъект, что и соответствует эллинистическому психологизму, то нас не удивит то обстоятельство, что как раз в эпоху Возрождения этот метод получил особую популярность, и художники новой великой субъективистской эпохи часто вспоминают именно метод Зевксиса (а не Поликлета) и связывают свое учение о пропорциях именно с ним.

II. ЭСТЕТИКА БЕСКОНЕЧНЫХ ЧИСЛОВЫХ СТРУКТУР, АНАКСАГОР

1. Предварительные вопросы

1. Ценность теории

Для Анаксагора характерна чрезвычайно высокая оценка "теории", "созерцания", мыслительно-интуитивного углубления в космос. Уже Ксенофан говорил о своем Едином (21А30), "направив свой взор на все небо", т.е. на мир как целое, на целостность космоса. Анаксагор еще резче подчеркивает самостоятельную ценность такого созерцания: "Когда кто-то... спросил Анаксагора, ради чего лучше родиться, чем не родиться, последний сказал: "Чтобы созерцать небо и устройство всего космоса" (59А30). По Анаксагору (А29), "целью жизни является теоретическое познание и проистекающая от него свобода". "Кажется, и Анаксагор не считал блаженным ни богатого, ни династа, говоря, что он не удивился бы, если бы блаженный показался толпе совершенно непригодным для блаженства, так как толпа судит всегда по внешности, которую только и понимает" (А30). Об этом пишет также и Эврипид (фр.910N.), находящийся под непосредственным влиянием Анаксагора: "Счастлив тот, кто предпринял изучение науки, не устремляя своего внимания ни на несчастье граждан, ни на несправедливые деяния, но замечал (лишь) неувядающий порядок (cosmon) бессмертной природы, какова она, где и как образовалась. К таким людям никогда не пристает забота о презренных делах".