2. Свойства определителей n-го порядка.
1. Определитель не меняется при транспонировании.
2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.
3. Если в определителе переставить две строки, определитель поменяет знак.
4. Определитель, содержащий две одинаковые строки, равен нулю.
5. Если все элементы некоторой строки определителя умножить на некоторое число k, то сам определитель умножится на k.
6. Определитель, содержащий две пропорциональные строки, равен нулю.
7. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых ai j = bj + cj (j= ), то определитель равен сумме определителей, у которых все строки, кроме i-ой, - такие же, как в заданном определителе, а i-я строка в одном из слагаемых состоит из элементов bj, в другом - из элементов cj.
8. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.
Замечание. Все свойства остаются справедливыми, если вместо строк взять столбцы.
- 1. Линейные операции над матрицами. Умножение матриц.
- 2. Неопределённый интеграл. Определение, таблица.
- 3. Найти косинус угла при вершине с в треугольнике авс, если известны координаты вершин треугольника: а (-1;0;4), в (0;-1;3) и с (1;0;4).
- 4. Вычислить интеграл .
- 1. Обратная матрица. Формула для нахождения обратной матрицы.
- 2. Интегрирование рациональных функций.
- 3. Найти угол между векторами и , если а (1;5;8), в (-3;7;2), с (6;4;-1), точка д является серединой отрезка ав.
- 4. Вычислить .
- 1. Интегрирование тригонометрических функций.
- 2. Вектор-функция. Выражение для кривизны в произвольных координатах.
- 3. Найти обратную матрицу к матрице и сделать проверку.
- 4. Вычислить .
- 1. Необходимое условие существования точек локального экстремума функций.
- 2. Интегрирование иррациональных функций.
- 3. Решить систему методом Крамера.
- 4. Исследовать функцию на непрерывность и сделать чертёж её графика.
- 1. Линейно зависимые и линейно независимые системы векторов в пространстве r2 и r3.
- 2. Взаимное расположение прямой и плоскости в пространстве.
- 3. Найти , если , и известны координаты векторов и : , .
- 4. Найти асимптоты функции .
- 1. Базис. Координаты вектора.
- 2. Выпуклость, вогнутость и точки перегиба. Их связь со второй производной.
- 3. Вычислить .
- 4. Вычислить .
- 1. Преобразование координат вектора при переходе к новому базису.
- 2. Теорема о сравнении пределом двух функций.
- 3. Решить систему методом Гаусса.
- 4. Вычислить интеграл .
- 1. Векторное произведение векторов и его свойства.
- 2. Бесконечно малые и бесконечно большие функции и связь между ними.
- 3. Выполнить действия: .
- 4. Вычислить .
- 1. Скалярное произведение и его свойства.
- 2. Первый замечательный предел.
- 3. . Найти обратную матрицу.
- 1. Евклидово пространство. Длина вектора, угол между векторами.
- 2. Второй замечательный предел.
- 3. Решить систему методом Гаусса.
- 4. Вычислить .
- 1. Смешанное произведение векторов и его свойства.
- 2. Определение производной. Таблица производных.
- 3. Привести уравнение к каноническому виду, определить вид кривой и построить её.
- 4. Зависимость у от х задана параметрически . Найти .
- 1. Виды уравнений прямой на плоскости.
- 2. Теорема Ролля.
- 3. Вычислить координаты вектора , перпендикулярного вектору , если .
- 4. Вычислить .
- 1. Виды уравнений прямой в пространстве. Скрещивающиеся прямые.
- 2. Теорема Коши.
- 3. Выполнить действия .
- 4. Найти точки разрыва, исследовать их характер и построить график функции
- 1. Приведение уравнения кривой второго порядка к каноническому виду (без поворотов).
- 2. Свойства определителей n-го порядка.
- 3. Вычислить интеграл .
- 4. Найти точку пересечения прямой и плоскости .
- 1. Правило Лопиталя.
- 3. Вычислить интеграл .
- 4. Найти наибольшее и наименьшее значение функции на отрезке