2. Взаимное расположение прямой и плоскости в пространстве.
Прямая может лежать на данной плоскости, быть параллельна данной плоскости или пересекать ее в одной точке.
Теорема. Пусть плоскость задана общим уравнением , а прямая L задана каноническими уравнениями или параметрическими уравнениями
, , в которых – координаты нормального вектора плоскости , – координаты произвольной фиксированной точки прямой L, –
координаты направляющего вектора прямой L. Тогда:
1) если , то прямая L пересекает плоскость в точке, координаты которой можно найти из системы уравнений
;
2) если и , то прямая лежит на плоскости;
3) если и , то прямая параллельна плоскости.
Доказательство. Условие говорит о том, что вектроры и не ортогональны, а значит прямая не параллельна плоскости и не лежит в плоскости, а значит пересекает ее в некоторой точке М. Координаты точки М удовлетворяют как уравнению плоскости, так и уравнениям прямой, т.е. системе уравнений. Решаем первое уравнение системы относительно неизвестной t и затем, подставляя найденное значение t в остальные уравнения системы, находим координаты искомой точки.
Если , то это означает, что . А такое возможно лишь тогда, когда прямая лежит на плоскости или параллельна ей. Если прямая лежит на плоскости, то любая точка прямой является точкой плоскости и координаты любой точки прямой удовлетворяют уравнению плоскости. Поэтому достаточно проверить, лежит ли на плоскости точка . Если , то точка – лежит на плоскости, а это означает, что и сама прямая лежит на плоскости.
Если , а , то точка на прямой не лежит на плоскости, а это означает, что прямая параллельна плоскости.
Теорема доказана.
Yandex.RTB R-A-252273-3
- 1. Линейные операции над матрицами. Умножение матриц.
- 2. Неопределённый интеграл. Определение, таблица.
- 3. Найти косинус угла при вершине с в треугольнике авс, если известны координаты вершин треугольника: а (-1;0;4), в (0;-1;3) и с (1;0;4).
- 4. Вычислить интеграл .
- 1. Обратная матрица. Формула для нахождения обратной матрицы.
- 2. Интегрирование рациональных функций.
- 3. Найти угол между векторами и , если а (1;5;8), в (-3;7;2), с (6;4;-1), точка д является серединой отрезка ав.
- 4. Вычислить .
- 1. Интегрирование тригонометрических функций.
- 2. Вектор-функция. Выражение для кривизны в произвольных координатах.
- 3. Найти обратную матрицу к матрице и сделать проверку.
- 4. Вычислить .
- 1. Необходимое условие существования точек локального экстремума функций.
- 2. Интегрирование иррациональных функций.
- 3. Решить систему методом Крамера.
- 4. Исследовать функцию на непрерывность и сделать чертёж её графика.
- 1. Линейно зависимые и линейно независимые системы векторов в пространстве r2 и r3.
- 2. Взаимное расположение прямой и плоскости в пространстве.
- 3. Найти , если , и известны координаты векторов и : , .
- 4. Найти асимптоты функции .
- 1. Базис. Координаты вектора.
- 2. Выпуклость, вогнутость и точки перегиба. Их связь со второй производной.
- 3. Вычислить .
- 4. Вычислить .
- 1. Преобразование координат вектора при переходе к новому базису.
- 2. Теорема о сравнении пределом двух функций.
- 3. Решить систему методом Гаусса.
- 4. Вычислить интеграл .
- 1. Векторное произведение векторов и его свойства.
- 2. Бесконечно малые и бесконечно большие функции и связь между ними.
- 3. Выполнить действия: .
- 4. Вычислить .
- 1. Скалярное произведение и его свойства.
- 2. Первый замечательный предел.
- 3. . Найти обратную матрицу.
- 1. Евклидово пространство. Длина вектора, угол между векторами.
- 2. Второй замечательный предел.
- 3. Решить систему методом Гаусса.
- 4. Вычислить .
- 1. Смешанное произведение векторов и его свойства.
- 2. Определение производной. Таблица производных.
- 3. Привести уравнение к каноническому виду, определить вид кривой и построить её.
- 4. Зависимость у от х задана параметрически . Найти .
- 1. Виды уравнений прямой на плоскости.
- 2. Теорема Ролля.
- 3. Вычислить координаты вектора , перпендикулярного вектору , если .
- 4. Вычислить .
- 1. Виды уравнений прямой в пространстве. Скрещивающиеся прямые.
- 2. Теорема Коши.
- 3. Выполнить действия .
- 4. Найти точки разрыва, исследовать их характер и построить график функции
- 1. Приведение уравнения кривой второго порядка к каноническому виду (без поворотов).
- 2. Свойства определителей n-го порядка.
- 3. Вычислить интеграл .
- 4. Найти точку пересечения прямой и плоскости .
- 1. Правило Лопиталя.
- 3. Вычислить интеграл .
- 4. Найти наибольшее и наименьшее значение функции на отрезке