logo
Ekzamen_po_matematike

2. Взаимное расположение прямой и плоскости в пространстве.

Прямая может лежать на данной плоскости, быть параллельна данной плоскости или пересекать ее в одной точке.

Теорема. Пусть плоскость  задана общим уравнением , а прямая L задана каноническими уравнениями или параметрическими уравнениями

, , в которых  – координаты нормального вектора плоскости ,  – координаты произвольной фиксированной точки прямой L,    –

координаты направляющего вектора прямой L. Тогда:

1) если , то прямая L пересекает плоскость  в точке, координаты которой  можно найти из системы уравнений            

;

2) если  и , то прямая лежит на плоскости;

3) если  и , то прямая параллельна плоскости.

Доказательство. Условие  говорит о том, что вектроры  и  не ортогональны, а значит прямая не параллельна плоскости и не лежит в плоскости, а значит пересекает ее в некоторой точке М. Координаты точки М удовлетворяют как уравнению плоскости, так и уравнениям прямой, т.е. системе уравнений. Решаем первое уравнение системы относительно неизвестной t и затем, подставляя найденное значение t в остальные уравнения системы, находим координаты искомой точки.

Если , то это означает, что . А такое возможно лишь тогда, когда прямая лежит на плоскости или параллельна ей. Если прямая лежит на плоскости, то любая точка прямой является точкой плоскости и координаты любой точки прямой удовлетворяют уравнению плоскости. Поэтому достаточно проверить, лежит ли на плоскости точка . Если , то точка  – лежит на плоскости, а это означает, что и сама прямая лежит на плоскости.

Если , а , то точка на прямой не лежит на плоскости, а это означает, что прямая параллельна плоскости.

Теорема доказана.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4