logo
Ekzamen_po_matematike

1. Правило Лопиталя.

Теорема (правило Лопиталя). Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g(x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при ха равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.

Доказательство. Применив формулу Коши, получим:

где  - точка, находящаяся между а и х. Учитывая, что f(a) = g(a) = 0:

Пусть при ха отношение стремится к некоторому пределу. Т.к. точка  лежит между точками а и х, то при ха получим а, а следовательно и отношение стремится к тому же пределу. Таким образом, можно записать:

.

Теорема доказана.

2. Таблица эквивалентности бесконечно малых.

1)

.

2)

.

3)

.

4)

.

5)

.

6)

( ).

)

.

7)

( ).

)

.

3. Вычислить интеграл .

4. Найти все корни 4-ой степени из числа 256.

БИЛЕТ № 24.

1. Система линейных алгебраических уравнений. Её запись и решение в матричной форме.

Пусть дана система уравнений:

Составим матрицы: A = ; B = ; X = .

Систему уравнений можно записать:

AX = B.

Сделаем следующее преобразование: A-1AX = A-1B,

т.к. А-1А = Е, то ЕХ = А-1В

Х = А-1В

Для применения данного метода необходимо находить обратную матрицу, что может быть связано с вычислительными трудностями при решении систем высокого порядка.

2. Достаточное условие существования точек локального экстремума функций.

Теорема. (Достаточные условия существования экстремума)

Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х1, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х1).

Если при переходе через точку х1 слева направо производная функции f(x) меняет знак с “+” на “-“, то в точке х = х1 функция f(x) имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет минимум.

Доказательство.

Пусть

По теореме Лагранжа: f(x) – f(x1) = f()(x – x1), где x <  < x1.

Тогда: 1) Если х < x1, то  < x1; f()>0; f()(x – x1)<0, следовательно f(x) – f(x1)<0 или f(x) < f(x1).

2) Если х > x1, то  > x1 f()<0; f()(x – x1)<0, следовательно f(x) – f(x1)<0 или f(x) < f(x1).

Т. к. ответы совпадают, то можно сказать, что f(x) < f(x1) в любых точках вблизи х1, т.е. х1 – точка максимума.

Доказательство теоремы для точки минимума производится аналогично.

Теорема доказана.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4