1. Преобразование координат вектора при переходе к новому базису.
Пусть в -мерном линейном пространстве выбран базис , и другой, новый, базис . Возьмем произвольный вектор из пространства . Его координатный столбец в старом базисе обозначим , а в новом -- .
Запишем разложения новых базисных векторов по старому базису:
Составим матрицу, столбцами которой служат координатные столбцы векторов нового базиса
Эта матрица называется матрицей перехода от старого базиса к новому.
Координатные столбцы в старом базисе и в новом базисе связаны формулой где справа стоит произведение матрицы перехода на матрицу-столбец.
Доказательство. Так как - координатный столбец вектора в новом базисе, то . Заменив векторы их разложениями по старому базису, получим: .
Изменим порядок суммирования Здесь мы получили разложение вектора по старому базису, причем координата вектора с номером равна . Элемент с номером столбца будет иметь такой же вид. Следовательно, формула доказана.
2. Теоремы о пределе частного, суммы и произведения.
Если существуют пределы :
Теорема. 1. Предел суммы есть сумма пределов:
Теорема. 2. Предел произведения есть произведение пределов:
Теорема. 3. Предел частного есть частное пределов (если знаменатель не обращается в 0):
3. Выполнить действия .
1.
2.
4. Вычислить .
БИЛЕТ № 12.
1. Неравенство Коши-Буняковского.
Теорема (неравенство Коши-Буняковского): для любых чисел :
Доказательство: при неравенство верно. Допустим, . Докажем, что
Перепишем это неравенство, частично раскрыв скобки:
.
Легко заметить, что для того, чтобы доказать это неравенство, достаточно доказать
Перенеся все слагаемые в одну сторону, и сгруппировав их, получаем очевидное неравенство:
, что и доказывает неравенство Коши-Буняковского.
Yandex.RTB R-A-252273-3
- 1. Линейные операции над матрицами. Умножение матриц.
- 2. Неопределённый интеграл. Определение, таблица.
- 3. Найти косинус угла при вершине с в треугольнике авс, если известны координаты вершин треугольника: а (-1;0;4), в (0;-1;3) и с (1;0;4).
- 4. Вычислить интеграл .
- 1. Обратная матрица. Формула для нахождения обратной матрицы.
- 2. Интегрирование рациональных функций.
- 3. Найти угол между векторами и , если а (1;5;8), в (-3;7;2), с (6;4;-1), точка д является серединой отрезка ав.
- 4. Вычислить .
- 1. Интегрирование тригонометрических функций.
- 2. Вектор-функция. Выражение для кривизны в произвольных координатах.
- 3. Найти обратную матрицу к матрице и сделать проверку.
- 4. Вычислить .
- 1. Необходимое условие существования точек локального экстремума функций.
- 2. Интегрирование иррациональных функций.
- 3. Решить систему методом Крамера.
- 4. Исследовать функцию на непрерывность и сделать чертёж её графика.
- 1. Линейно зависимые и линейно независимые системы векторов в пространстве r2 и r3.
- 2. Взаимное расположение прямой и плоскости в пространстве.
- 3. Найти , если , и известны координаты векторов и : , .
- 4. Найти асимптоты функции .
- 1. Базис. Координаты вектора.
- 2. Выпуклость, вогнутость и точки перегиба. Их связь со второй производной.
- 3. Вычислить .
- 4. Вычислить .
- 1. Преобразование координат вектора при переходе к новому базису.
- 2. Теорема о сравнении пределом двух функций.
- 3. Решить систему методом Гаусса.
- 4. Вычислить интеграл .
- 1. Векторное произведение векторов и его свойства.
- 2. Бесконечно малые и бесконечно большие функции и связь между ними.
- 3. Выполнить действия: .
- 4. Вычислить .
- 1. Скалярное произведение и его свойства.
- 2. Первый замечательный предел.
- 3. . Найти обратную матрицу.
- 1. Евклидово пространство. Длина вектора, угол между векторами.
- 2. Второй замечательный предел.
- 3. Решить систему методом Гаусса.
- 4. Вычислить .
- 1. Смешанное произведение векторов и его свойства.
- 2. Определение производной. Таблица производных.
- 3. Привести уравнение к каноническому виду, определить вид кривой и построить её.
- 4. Зависимость у от х задана параметрически . Найти .
- 1. Виды уравнений прямой на плоскости.
- 2. Теорема Ролля.
- 3. Вычислить координаты вектора , перпендикулярного вектору , если .
- 4. Вычислить .
- 1. Виды уравнений прямой в пространстве. Скрещивающиеся прямые.
- 2. Теорема Коши.
- 3. Выполнить действия .
- 4. Найти точки разрыва, исследовать их характер и построить график функции
- 1. Приведение уравнения кривой второго порядка к каноническому виду (без поворотов).
- 2. Свойства определителей n-го порядка.
- 3. Вычислить интеграл .
- 4. Найти точку пересечения прямой и плоскости .
- 1. Правило Лопиталя.
- 3. Вычислить интеграл .
- 4. Найти наибольшее и наименьшее значение функции на отрезке