2. Определение производной. Таблица производных.
Пусть функция y = f(x) определена в промежутке X. Производной функции y = f(x) в точке хo называется предел = .
Если этот предел конечный, то функция f(x) называется дифференцируемой в точке xo; при этом она оказывается обязательно и непрерывной в этой точке.
Если же рассматриваемый предел равен ∞ (или -∞ ), то при условии, что функция в точке хo непрерывна, будем говорить, что функция f(x) имеет в точке хo бесконечную производную.
Производная обозначается символами y ' , f ' (xo), , .
Нахождение производной называется дифференцированием функции. Геометрический смысл производной состоит в том, что производная есть угловой коэффициент касательной к кривой y=f(x) в данной точке хo; физический смысл - в том, что производная от пути по времени есть мгновенная скорость движущейся точки при прямолинейном движении s = s(t) в момент t0.
Таблица производных:
1. (um)' = m um-1 u' (m принадлежит R1 )
2. (au)' = au lna× u'.
3. (eu)' = eu u'.
4. (loga u)' = u'/(u ln a).
5. (ln u)' = u'/u.
6. (sin u)' = cos u× u'.
7. (cos u)' = - sin u× u'.
8. (tg u)' = 1/ cos2u× u'.
9. (ctg u)' = - u' / sin2u.
10. (arcsin u)' = u' / .
11. (arccos u)' = - u' / .
12. (arctg u)' = u'/(1 + u2).
13. (arcctg u)' = - u'/(1 + u2).
Yandex.RTB R-A-252273-3- 1. Линейные операции над матрицами. Умножение матриц.
- 2. Неопределённый интеграл. Определение, таблица.
- 3. Найти косинус угла при вершине с в треугольнике авс, если известны координаты вершин треугольника: а (-1;0;4), в (0;-1;3) и с (1;0;4).
- 4. Вычислить интеграл .
- 1. Обратная матрица. Формула для нахождения обратной матрицы.
- 2. Интегрирование рациональных функций.
- 3. Найти угол между векторами и , если а (1;5;8), в (-3;7;2), с (6;4;-1), точка д является серединой отрезка ав.
- 4. Вычислить .
- 1. Интегрирование тригонометрических функций.
- 2. Вектор-функция. Выражение для кривизны в произвольных координатах.
- 3. Найти обратную матрицу к матрице и сделать проверку.
- 4. Вычислить .
- 1. Необходимое условие существования точек локального экстремума функций.
- 2. Интегрирование иррациональных функций.
- 3. Решить систему методом Крамера.
- 4. Исследовать функцию на непрерывность и сделать чертёж её графика.
- 1. Линейно зависимые и линейно независимые системы векторов в пространстве r2 и r3.
- 2. Взаимное расположение прямой и плоскости в пространстве.
- 3. Найти , если , и известны координаты векторов и : , .
- 4. Найти асимптоты функции .
- 1. Базис. Координаты вектора.
- 2. Выпуклость, вогнутость и точки перегиба. Их связь со второй производной.
- 3. Вычислить .
- 4. Вычислить .
- 1. Преобразование координат вектора при переходе к новому базису.
- 2. Теорема о сравнении пределом двух функций.
- 3. Решить систему методом Гаусса.
- 4. Вычислить интеграл .
- 1. Векторное произведение векторов и его свойства.
- 2. Бесконечно малые и бесконечно большие функции и связь между ними.
- 3. Выполнить действия: .
- 4. Вычислить .
- 1. Скалярное произведение и его свойства.
- 2. Первый замечательный предел.
- 3. . Найти обратную матрицу.
- 1. Евклидово пространство. Длина вектора, угол между векторами.
- 2. Второй замечательный предел.
- 3. Решить систему методом Гаусса.
- 4. Вычислить .
- 1. Смешанное произведение векторов и его свойства.
- 2. Определение производной. Таблица производных.
- 3. Привести уравнение к каноническому виду, определить вид кривой и построить её.
- 4. Зависимость у от х задана параметрически . Найти .
- 1. Виды уравнений прямой на плоскости.
- 2. Теорема Ролля.
- 3. Вычислить координаты вектора , перпендикулярного вектору , если .
- 4. Вычислить .
- 1. Виды уравнений прямой в пространстве. Скрещивающиеся прямые.
- 2. Теорема Коши.
- 3. Выполнить действия .
- 4. Найти точки разрыва, исследовать их характер и построить график функции
- 1. Приведение уравнения кривой второго порядка к каноническому виду (без поворотов).
- 2. Свойства определителей n-го порядка.
- 3. Вычислить интеграл .
- 4. Найти точку пересечения прямой и плоскости .
- 1. Правило Лопиталя.
- 3. Вычислить интеграл .
- 4. Найти наибольшее и наименьшее значение функции на отрезке