logo search
Ekzamen_po_matematike

2. Теорема о сравнении пределом двух функций.

Теорема. Пусть даны две функции и , заданные на , причём при всех выполняется неравенство Тогда из сходимости интеграла от большей функции, , следует сходимость интеграла от меньшей функции, , причём а из расходимости интеграла от меньшей функции, , следует расходимость интеграла от большей функции, :

        Доказательство. Поскольку , то функция не убывает (геометрически значение функции равно площади криволинейной трапеции, лежащей над отрезком , а эта площадь, очевидно, не убывает, если увеличивать ). Точно так же не убывает и функция , причём по теореме об интегрировании неравенства получаем: из следует, что

Так как не убывает, то сходимость интеграла означает, что предел при существует и при всех . Поэтому при всех , то есть функция ограничена сверху постоянной . Но мы знаем, что неубывающая ограниченная сверху функция непременно имеет предел при , не больший ограничивающей постоянной: существует предел

По определению, этот предел равен значению несобственного интеграла:

так что сходимость интеграла от меньшей функции доказана, а полученное неравенство означает, что первое утверждение доказано.

Доказательство второго утверждения теоремы сразу следует из первого утверждения по принципу "от противного": предположим, что интеграл от меньшей функции расходится. Если бы утверждение было неверно и интеграл от большей функции оказался бы сходящимся, то вместе с ним сходился бы и интеграл от меньшей функции, вопреки предположению. Значит, второе утверждение теоремы верно.