2. Теорема Ролля.
Теорема. Если функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (а, b) и значения функции на концах отрезка равны f(a) = f(b), то на интервале (а, b) существует точка , a < < b, в которой производная функция f(x) равная нулю,
f() = 0.
Геометрический смысл теоремы Ролля состоит в том, что при выполнении условий теоремы на интервале (a, b) существует точка такая, что в соответствующей точке кривой y = f(x) касательная параллельна оси Ох. Таких точек на интервале может быть и несколько, но теорема утверждает существование по крайней мере одной такой точки.
Доказательство. По свойству функций, непрерывных на отрезке функция f(x) на отрезке [a, b] принимает наибольшее и наименьшее значения. Обозначим эти значения М и m соответственно. Возможны два различных случая М = m и M m.
1. Пусть M = m. Тогда функция f(x) на отрезке [a, b] сохраняет постоянное значение и в любой точке интервала ее производная равна нулю. В этом случае за можно принять любую точку интервала.
2. Пусть М = m. Так значения на концах отрезка равны, то хотя бы одно из значений М или m функция принимает внутри отрезка [a, b]. Обозначим , a < < b точку, в которой f() = M. Так как М- наибольшее значение функции, то для любого х ( будем считать, что точка + х находится внутри рассматриваемого интервала) верно неравенство:
f() = f( + x) – f() 0
При этом
Но так как по условию производная в точке существует, то существует и предел .
Т.к. и , то можно сделать вывод:
Теорема доказана.
Теорема Ролля имеет несколько следствий:
Если функция f(x) на отрезке [a, b] удовлетворяет теореме Ролля, причем
f(a) = f(b) = 0, то существует по крайней мере одна точка , a < < b, такая, что f() = 0. Т.е. между двумя нулями функции найдется хотя бы одна точка, в которой производная функции равна нулю.
Если на рассматриваемом интервале (а, b) функция f(x) имеет производную (n-1)- го порядка и n раз обращается в нуль, то существует по крайней мере одна точка интервала, в котором производная (n – 1) – го порядка равна нулю.
- 1. Линейные операции над матрицами. Умножение матриц.
- 2. Неопределённый интеграл. Определение, таблица.
- 3. Найти косинус угла при вершине с в треугольнике авс, если известны координаты вершин треугольника: а (-1;0;4), в (0;-1;3) и с (1;0;4).
- 4. Вычислить интеграл .
- 1. Обратная матрица. Формула для нахождения обратной матрицы.
- 2. Интегрирование рациональных функций.
- 3. Найти угол между векторами и , если а (1;5;8), в (-3;7;2), с (6;4;-1), точка д является серединой отрезка ав.
- 4. Вычислить .
- 1. Интегрирование тригонометрических функций.
- 2. Вектор-функция. Выражение для кривизны в произвольных координатах.
- 3. Найти обратную матрицу к матрице и сделать проверку.
- 4. Вычислить .
- 1. Необходимое условие существования точек локального экстремума функций.
- 2. Интегрирование иррациональных функций.
- 3. Решить систему методом Крамера.
- 4. Исследовать функцию на непрерывность и сделать чертёж её графика.
- 1. Линейно зависимые и линейно независимые системы векторов в пространстве r2 и r3.
- 2. Взаимное расположение прямой и плоскости в пространстве.
- 3. Найти , если , и известны координаты векторов и : , .
- 4. Найти асимптоты функции .
- 1. Базис. Координаты вектора.
- 2. Выпуклость, вогнутость и точки перегиба. Их связь со второй производной.
- 3. Вычислить .
- 4. Вычислить .
- 1. Преобразование координат вектора при переходе к новому базису.
- 2. Теорема о сравнении пределом двух функций.
- 3. Решить систему методом Гаусса.
- 4. Вычислить интеграл .
- 1. Векторное произведение векторов и его свойства.
- 2. Бесконечно малые и бесконечно большие функции и связь между ними.
- 3. Выполнить действия: .
- 4. Вычислить .
- 1. Скалярное произведение и его свойства.
- 2. Первый замечательный предел.
- 3. . Найти обратную матрицу.
- 1. Евклидово пространство. Длина вектора, угол между векторами.
- 2. Второй замечательный предел.
- 3. Решить систему методом Гаусса.
- 4. Вычислить .
- 1. Смешанное произведение векторов и его свойства.
- 2. Определение производной. Таблица производных.
- 3. Привести уравнение к каноническому виду, определить вид кривой и построить её.
- 4. Зависимость у от х задана параметрически . Найти .
- 1. Виды уравнений прямой на плоскости.
- 2. Теорема Ролля.
- 3. Вычислить координаты вектора , перпендикулярного вектору , если .
- 4. Вычислить .
- 1. Виды уравнений прямой в пространстве. Скрещивающиеся прямые.
- 2. Теорема Коши.
- 3. Выполнить действия .
- 4. Найти точки разрыва, исследовать их характер и построить график функции
- 1. Приведение уравнения кривой второго порядка к каноническому виду (без поворотов).
- 2. Свойства определителей n-го порядка.
- 3. Вычислить интеграл .
- 4. Найти точку пересечения прямой и плоскости .
- 1. Правило Лопиталя.
- 3. Вычислить интеграл .
- 4. Найти наибольшее и наименьшее значение функции на отрезке