logo search

Модель (от лат. Modulus — мера, образец, норма)

— а) в самом широком смысле — любой мысленный или знаковый образ модели­руемого объекта (оригинала). К их числу относятся гносеологиче­ские образы (воспроизведение, отображение исследуемого объек­та или системы объектов в виде научных описаний, теорий, фор­мул, систем упражнений и т. п.), схемы, чертежи, графики, планы, карты и т. д.; б) специально создаваемый или специально подби­раемый объект, воспроизводящий характеристики изучаемого объекта. Большую роль в современной науке играют т.наз. знако­вые М., позволяющие в виде формул, уравнений, графиков и т. п. отображать существенные отношения между изучаемыми предме­тами, явлениями, различные процессы. Пример знаковой М. — дифференциальное уравнение в математике, описывающее (мо­делирующее) протекание во времени к.-л. физического процесса. Знаковые М. широко используются в информатике при создании соответствующих программ для ЭВМ; к их числу принадлежат М., воспроизводящие решение сложных задач, специфических для деятельности человеческого мозга и имеющих творческий характер (М., относимые в информатике к искусственному ин­теллекту). Между М. и изучаемым объектом (оригиналом), кото­рый может представлять собой весьма сложную систему, должно существовать сходство в каких-то физических характеристиках, или в структуре, или в функциях (см.: Моделирование).

В математической логике под М. понимается интерпретация к.-л. логико-математических предложений и их систем. В разрабатыва­емой в математической логике теории М. под М. понимается про­извольное множество элементов с определенными на нем функ­циями и предикатами (см.: Семантика логическая). Понятие М. яв­ляется одним из центральных и сложных понятий теории познания, поскольку оно опирается на понятие отражения, истины, сход-

[207]

ства, различия, правдоподобия и т. п.; роль его в методологии науки огромна.