logo search

Непредикативное определение

- определение, с помощью которого некоторые объекты вводятся через множества, включа­ющие эти объекты в качестве своих элементов. Напр.: «Верхней границей множества действительных чисел называется самое боль­шое число этого множества, т. е. число, которое больше любого числа этого множества». В этом определении Dfd («верхняя грани­ца множества действительных чисел»), т. е. определяемое, вклю­чается в множество действительных чисел Dfn как самое большое число этого множества — определяющее - и тем самым участвует в формировании этого множества. Такие определения дол­жны рассматриваться как определения с «порочным кругом»: Dfd определяется в них через Dfn, куда включается Dfd. Тем не менее они используются в науке. В целях «оправдания» они особым обра­зом интерпретируются. Одним из таких «оправданий» является пред­ложенная Б. Расселом аксиома сводимости, согласно которой для Н. о. должны существовать иные способы задания множеств, в ко­торые определяемый объект включается в качестве элемента неза­висимо от его определения. Так, согласно Б. Расселу, приведенное выше определение является правильным, поскольку множество действительных чисел независимо от определения может быть экземплифицировано множеством точек на отрезке прямой (О, 1).

Если мы имеем дело с определениями, где множество, через которое определяется Dfd не формируется данным определени­ем, а существует независимо от него, и если задача определения состоит в том, чтобы выделить некоторый элемент из нашего множества и при этом специфицировать его, — никакого пороч­ного круга не возникает. Так, определяя Марс как планету Сол­нечной системы, четвертую по порядку от Солнца, мы не совер­шаем порочного круга, поскольку множество планет Солнечной системы существует независимо от нашего определения и мы лишь выделяем из этого множества планету Марс. Такие определения рассматриваются обычно как определения через род и видовое отличие (см.: Определение классическое).