logo search

Существенный признак, см.: Определение понятия. Сходство

— наличие хотя бы одного общего признака у изуча­емых предметов. Отношение сходства двух предметов в достаточно определенных признаках обладает свойствами симметричности (см.: Отношение симметричное), транзитивности (см.: Отношение тран­зитивное) и рефлексивности (см.: Отношение рефлексивное). С. есть отношение, родственное отношению равенства.

[337]

Т

ТАБЛИЦА ИСТИННОСТИ

- таблица, с помощью которой уста­навливается истинностное значение сложного высказывания при данных значениях входящих в него простых высказываний. В клас­сической математической логике предполагается, что каждое про­стое (не содержащее логических связок) высказывание является либо истинным, либо ложным, но не тем и другим одновременно. Нам не известно, истинно или ложно данное простое высказыва­ние, чтобы установить это, потребовалось бы обратиться к фактам действительности, но логика этого не делает. Однако мы знаем, что у высказывания имеется лишь две возможности — быть истин­ным либо быть ложным. Когда с помощью логических связок мы соединяем простые высказывания в сложное, встает вопрос: при каких условиях сложное высказывание считается истинным, а при каких — ложным? Для ответа на этот вопрос и служат Т. и. Каждая логическая связка имеет свою таблицу, которая показывает, при каких наборах значений простых высказываний сложное высказы­вание с этой связкой будет истинным, а при каких — ложным. Приведем Т. и. для отрицания, конъюнкции, дизъюнкции и имплика­ции («и» означает «истина», «л» - «ложь»):

А

~ А

А

В

А&В

A v B

A-> в

и

л

и

и

и

и

и

л

и

и

л

л

и

л

л

и

л

и

и

л

л

л

л

и

Пользуясь приведенными таблицами, для любого сложного выска­зывания, содержащего указанные связки, можем построить Т. и..

[328]

которая покажет, когда высказывание истинно и когда — ложно. В качестве примера построим Т. и. для такого высказывания: (A v~B) —> B.

А

B

(Av~B) ->B

1

и

и

и

и

2

и

л

и

л

3

л

и

л

и

4

л

л

и

л

Сначала, руководствуясь таблицей для отрицания, выписываем значения (в таблице опущены): 1) «л»; 2) «и»; 3) «л»; 4) «и». Затем устанавливаем значения дизъюнктивного высказывания, сто­ящего в скобках. Для случая (1): A истинно, ~ В — ложно, в таблице для дизъюнкции это соответствует случаю (2), при котором дизъ­юнкция истинна, поэтому под нашим высказыванием пишем «и», и т. д. И наконец, выписываем значения истинности для имплика­ции, которая в данном случае является главной связкой нашего высказывания. Построенная таблица говорит, что наше сложное высказывание истинно при первом и третьем наборах значений про­стых высказываний и ложно при втором и четвертом наборах.

Т. и. позволяет выделить из класса формул нашего языка всегда истинные формулы (тавтологии), всегда ложные формулы, устано­вить отношение логического следования между формулами, их эк­вивалентность и т. д. Наряду с двузначными Т. и. в логике использу­ются таблицы с тремя, четырьмя и т. д. значениями истинности, построением и анализом которых занимается многозначная логика.