Частный закон приведения к абсурду
представляется формулой:
(р -> р) -> ~ р,
если (если р, то не-р), то не-р. Напр., из положения «Всякое правило имеет исключения», которое само является правилом, вытекает высказывание «Есть правила, не имеющие исключений»; значит, последнее высказывание истинно. В романе И. С. Тургенева «Рудин» имеется такой диалог: «— Стало быть, по-вашему, убеждений нет? - Нет и не существует. — Это ваше убеждение? — Да. — Как же вы говорите, что их нет? Вот вам уже одно на первый случай». Ошибочному мнению, что никаких убеждений нет, противопоставляется его отрицание: есть по крайней мере одно убеждение, а именно — что убеждений нет. Коль скоро утверждение «Убеждения существуют» вытекает из своего собственного отрицания, это утверждение, а не его отрицание, является истинным.
ПРИМЕР
— факт или частный случай, используемый в качестве отправного пункта для последующего обобщения и для подкрепления сделанного обобщения. «Далее я говорю, — пишет философ XVIII в. Дж. Беркли, — что грех или моральная испорченность состоят не во внешнем физическом действии или движении, но во внутреннем отклонении воли от законов разума и религии. Ведь убиение врага в сражении или приведение в исполнение смертного приговора над преступником, согласно закону, не считаются греховными, хотя внешнее действие здесь то же, что и в случае убийства». Здесь приводятся два П. (убийство на войне и в исполнение смертного приговора), призванные подтвердить общее положение о грехе или моральной испорченности. Использование фактов или частных случаев в качестве П. нужно отличать от использования их в качестве иллюстрации или образа. Выступая в качестве П., частный случай делает возможным
[280]
обобщение, в качестве иллюстрации он подкрепляет уже установленное положение, в качестве образца он побуждает к подражанию.
В случае П. рассуждение идет по схеме: «если первое, то второе; второе имеет место; значит, первое также имеет место». Данное рассуждение от утверждения следствия условного высказывания к утверждению его основания не является правильным дедуктивным умозаключением. Истинность посылок не гарантирует истинности выводимого из них заключения; в случае истинности посылок об истинности заключения можно говорить только с какой-то вероятностью. Рассуждение на основе П. не доказывает сопровождаемое П. положение, а лишь подтверждает его, делает его более вероятным, или правдоподобным. Чаще всего рассуждение, использующее П., протекает по схеме: «если всякое S есть Р, то S1 есть Р, S2 есть Р и т. д.; S1 есть Р, S2 есть P и т. д.; значит, всякое S есть Р». Это схема индуктивного (правдоподобного) рассуждения. П. обладает, однако, рядом особенностей, выделяющих его из числа всех тех фактов и частных случаев, которые привлекаются для подтверждения общих положений и гипотез. П. более убедителен или более весом, чем остальные факты и частные случаи. Он представляет собой не просто факт, а типический факт, т. е. факт, обнаруживающий определенную тенденцию. Типизирующая функция П. объясняет широкое его использование в процессах аргументации, в особенности в гуманитарной и практической аргументации, а также в повседневном рассуждении.
П. может использоваться только для поддержки описательных утверждений и в качестве отправного пункта для описательных обобщений. П. не способен поддерживать оценки и утверждения, которые, подобно нормам, клятвам, обещаниям, рекомендациям, декларациям и т. п., тяготеют к оценкам. П. не может служить и исходным материалом для оценочных и подобных им утверждений. То, что иногда представляется в качестве П., призванного как-то подкрепить оценку, норму и т. п., на самом деле является не П., в образцом. Отличие П. от образца существенно: П. представляет собой описание, в то время как образец является оценкой, относящейся к какому-то частному случаю и устанавливающей частный стандарт, идеал и т. п.
Цель П. — подвести к формулировке общего положения и в какой-то мере быть доводом в поддержку последнего. С этой целью связаны критерии выбора П. Прежде всего избираемый в качестве П. факт или частный случай должен выглядеть ясным и неоспоримым. Он должен также достаточно отчетливо выражать тенденцию к обобщению. С требованием тенденциозности или типичности, фактов, берущихся в качестве П., связана рекомендация перечислять несколько однотипных П., если, взятые поодиночке,
[281]
они не подсказывают с нужной определенностью направление предстоящего обобщения или не подкрепляют уже сделанное обобщение. Если намерение аргументировать с помощью П. не объявляется открыто, сам приводимый факт и его контекст должны показывать, что слушатели имеют дело именно с П., а не с описанием изолированного явления, воспринимаемым как простая информация. Событие, используемое в качестве П., должно восприниматься если и не как обычное, то, во всяком случае, как логически и физически возможное. Если это не так, то П. просто обрывает последовательность рассуждения и приводит как раз к обратному результату или комическому эффекту. П. должен подбираться и формулироваться таким образом, чтобы он побуждал перейти от единичного или частного к общему, а не от частного опять-таки к частному.
Особого внимания требует противоречащий П. Обычно считается, что такой П. может использоваться только при опровержении ошибочных обобщений, их фальсификации. Если выдвигается общее положение «Все лебеди белые», то П. с черными лебедями, живущими в Австралии, способен опровергнуть данное общее положение. Рассуждение идет по схеме: «Все S есть Р, но Sn не есть Р, следовательно, некоторые S не есть Р». Однако противоречащий П. нередко используется и иначе: он вводится с намерением воспрепятствовать неправомерному обобщению и, демонстрируя свою несовместимость с ним, подсказать то единственное направление, в котором может идти обобщение. Задача противоречащего П. в этом случае не фальсификация какого-то общего положения, а выявление такого положения.
Иногда высказывается мнение, что П. должен приводиться до формулировки того обобщения, к которому он подталкивает и которое он поддерживает. Вряд ли это мнение оправданно. Порядок изложения не особенно существен для аргументации с помощью П. Он может предшествовать обобщению, но может также следовать за ним. Функция П.: подтолкнуть мысль к обобщению и подкрепить это обобщение конкретным и типичным П. Если упор делается на то, чтобы придать мысли движение и помочь ей по инерции прийти к обобщающему положению, то П. обычно предшествует обобщению. Если же на первый план выдвигается подкрепляющая функция П., то, возможно, его лучше привести посте обобщения. Однако эти две задачи, ставшие перед П., настолько тесно связаны, что разделение их и тем более противопоставление, отражающееся на последовательности изложения, возможно только в абстракции. Скорее здесь можно говорить о другом правиле, связанном со сложностью и неожиданностью того обобщения, которое делается на основе П. Если оно является сложным или просто неожиданным для аудито-
[282]
рии, лучше подготовить его введение предшествующим ему П. Если обобщение в общих чертах известно слушателям и не звучит для них парадоксом, то П. может следовать за его введением в изложение.
- Можно сразу проверить наличие шрифта для символов логики Symbol
- Словарь по логике
- 4306010000-112 И———————— Без объявл. 14к(03)-97
- Вопрос 59
- От редакции
- Абсолютизация
- Абсолютные и сравнительные модальности
- Абстрактный предмет (англ. - abstract entity)
- Абстракция (от лат. Abstractio — отвлечение)
- Абсурд (от лат. Absurdus — нелепый, глупый)
- Автомат (от греч. Automatos — самодействующий)
- Автонимное употребление выражений (от греч. Autos-сам, опота — имя)
- Аксиологическая модальность (от греч. Axios - ценный, logos — понятие, учение), или: Оценочная модальность,
- Аксиома (от греч. Axioma — значимое, принятое положение)
- Аксиоматический метод
- Аксиоматическое определение
- Алгебра буля
- Алгоритм (алгорифм)
- Алогизм (от греч. А — не, logos — разум)
- Амфиболия (от греч. Amphibolia — двусмысленность, двойственность)
- Анализ и синтез. А. (от греч. Analysis - разложение)
- Аналитические и синтетические суждения (в логике).
- Аналогия (от греч. Analogia — соответствие)
- Метафора,
- Антецедент и консеквент (от лат. Antecedent - предшествующий, предыдущий и consequens — следствие)
- Антиномия (от греч. Antinomia - противоречие в законе)
- Антиномия рассела
- Антитезис (от греч. Antithesis — противоположение)
- Аподиктический (от греч. Apodeiktikos — доказательный, убедительный)
- Апория (от греч. Aporia — затруднение, недоумение)
- Аргумент (лат. Argumentum)
- Аргументации теория
- Аргументация (от лат. Argumentatio - приведение аргументов)
- Аргументация контекстуальная
- Аргументация теоретическая
- Аргументация эмпирическая
- Аргумент к авторитету (от лат. I pse dixit - сам сказал)
- Аргумент к аудитории
- Аргумент к жалости
- Аргумент к незнанию, или невежеству,
- Аргумент к силе («палочный» довод)
- Аргумент к скромности
- Аргумент к тщеславию
- Ассерторический (от лат. Asserto - утверждаю)
- Бессмысленное
- «Бритва оккама»
- Вербальное определение
- Верификация (от лат. Verificatio — доказательство, подтверждение)
- Вероятностная логика
- Вероятность
- Возможность логическая
- Возражение
- Вопросов логика, или: Эротетическая, интеррогативная логика,
- Вывод логический
- Высказывание
- Высказывание дескриптивное (от англ. Description - описание), или: Высказывание описательное,
- Высказывание категорическое
- Высказывание (предложение) контрфактическое (от лат. Contra — против, factum — событие)
- Герменевтика (от греч. Hermeneuo - разъясняю, истолковываю)
- Гёделя теорема
- Гипостазирование (от греч. Hypostasis - сущность, субстанция)
- Гипотеза (от греч. Hipothesis - основание, предположение)
- Гипотетико-дедуктивный метод
- Гипотетическое утверждение
- Гомоморфизм, изоморфизм
- Двойного отрицания закон, см.: Закон двойного отрицания. Двузначная логика
- Двузначности принцип
- Дедукция (от лат. Deductio — выведение)
- Деление логическое
- Денотат (от лат. Denoto — обозначаю), или: Десигнат, предметное значение,
- Деонтическая логика (от греч. Deon — долг, правильность),
- Деонтическая модальность (от греч. Deon - долг, правильность),
- Дескрипция определенная (от лат. Descriptio - описание)
- Диаграммы венна
- Диалектическая логика
- Дизъюнктивный силлогизм, см.: Модус понендо толленс. Модус толлендо поненс. Дизъюнкция (от лат. Disjunctio — разобщение, различение)
- Дилемма (от греч. Di(s) - дважды и lemma - предположение)
- Дискурсивный (от лат. Discursus — рассуждение, довод, аргумент)
- Дискуссия (от лат. Discussio — рассмотрение, исследование)
- Дистрибутивные и коллективные свойства. Д. С.
- Дихотомия (от греч, dicha и tome - рассечение на две части)
- Доказательство
- Доказательство конструктивное, см.: Конструктивная логика. Доказательство от противного, см.: Косвенное доказательство. Доказательство по случаям, или: Доказательство разбором случаев,
- Доказуемость, см.: Доказательство. Дополнение к множеству
- Достаточного основания принцип
- Достаточное условие, см.: Условное высказывание. Достоверность
- Заблуждение
- Закон ассоциативности (от лат. Associatio — соединение)
- Закон гипотетического силлогизма
- Закон двойного отрицания
- Закон де моргана
- Закон дистрибутивности (от англ. Distribution - распределение, размещение)
- Закон дунса скота
- Закон импортации, см.: Закон экспортации — импортации. Закон исключенного третьего
- Закон клавия
- Закон коммутативности (от лат. Commutatio - изменение, перемена)
- Закон коммутации (от лат. Commutatio - изменение, перемена)
- Закон композиции (от лат. Compositio — сочинение, составление)
- Закон косвенного доказательства
- Закон логики, см.: Логический закон. Закон мышления - термин традиционной логики,
- Закон противоречия, см.: Непротиворечия закон. Закон экспортации - импортации (от лат. Exportare -вывозить, importare — ввозить)
- Значение
- Идеализация
- Идемпотентности закон (от лат. Idempotens - сохраняющий ту же степень)
- Иллюстрация (от лат. Illustratio - прояснять)
- Импликация (от лат. Implicatio - сплетение, от implico — тесно связываю)
- Импликация материальная - импликация в трактовке логики классической.
- Индивид (от лат. Individuum - неделимое)
- Индуктивная логика
- Индуктивное определение
- Индукции каноны (от греч. Canon — правило, предписание)
- Метод единственного сходства:
- Метод сопутствующих изменений:
- Метод остатков.
- Индукция (от лат. Inductio - наведение)
- Индукция математическая, полная математическая индукция
- Индукция неполная
- Индукция полная
- Индукция популярная
- Интенсионал и экстенсионал
- Интерпретация (от лат. Interpretatio - разъяснение, истолкование)
- Интерсубъективный (от лат. Inter - между)
- Интуитивная логика
- Интуиционизм
- Интуиционистская логика
- Интуиция (от лат. Intuitio — пристальное, внимательное всматривание, созерцание)
- Иррациональное (от лат. Irrationalis - неразумный, бессознательный)
- Исключенного третьего закон, см.: Закон исключенного третьего. Искусственный интеллект
- Истинностное значение
- Исчисление
- Кавычки
- Категорическое суждение
- Категория (от греч. Kategoria - высказывание, обвинение, признак)
- Каузальная модальность, см.: Онтологическая модальность. Класс, множество (в логике и математике)
- Классификация
- Классическая логика, см.: Логика классическая. Конвенция (от лат. Conventio - соглашение)
- Коннотация (от лат. Connotatio — добавочное значение)
- Конструктивная логика
- Контекст (от лат. Contextus — сцепление, соединение, связь)
- Контекстуальное определение, см.: Определение контекстуальное. Контрадикторная противоположность (от лат. Contradictorius — противоречащий)
- Контрапозиции закон
- Контрарная противоположность (от лат. Contrarius - противоположный)
- Концепт (от лат. Conceptus— понятие)
- Конъюнкция (от лат. Conjunctio - союз, связь)
- Косвенное доказательство
- Круг в доказательстве (лат. — circulus in demonstrando)
- Круг в определении
- Лемма (от греч. Lemma — предположение)
- «Лжеца» парадокс
- Логика (от греч. Logos — слово, понятие, рассуждение, разум), или: Формальная логика,
- Логика времени, или: Временная логика,
- Логика высказываний, или: Пропозициональная логика,
- Логика дедуктивная, см.: Дедукция. Логика изменения
- Логика квантовой механики
- Логика классическая
- Логика классов
- Логика комбинаторная (от лат. Combinare — соединять, сочетать)
- Логика многозначная, см.: Многозначная логика. Логика научного познания, или: Логика науки,
- Логика неклассическая
- Логика норм, см.: Деонтическая логика. Логика отношений
- Логика предикатов, или: Функциональная логика, теория квантификации, кванторная логика,
- Логика традиционная, см.: Традиционная логика. Логика эпистемическая (от греч. Episteme - знание)
- Математическая логика
- Материальная суппозиция, см.: Суппозиция. Метаматематика
- Метатеория (от греч. Meta - после, за, позади)
- Метафора (от греч, metaphora - перенос, образ)
- Метаязык (от греч. Meta - после, за, позади)
- Метод (от греч. Methodos — путь, способ исследования, обучения, изложения)
- Методологическая аргументация
- Методология науки
- Многозначная логика
- Многозначности принцип, см.: Принцип многозначности. Многозначность
- Множеств теория
- Модальная логика
- Модальность (от лат., modus — мера, способ)
- Модель (от лат. Modulus — мера, образец, норма)
- Модель семантическая
- Модус (лат. Modus - мера, способ, образ, вид)
- Модус понендо толленс (лат. Modus ponendo tollens)
- Модус поненс (лат. Modus ponens)
- Модус толлендо поненс (лат. Modus tollendo ponens)
- Модус толленс (лат. Modus tollens)
- Мышление
- «Не вытекает», «не следует» (лат. Поп sequitur)
- «Недоказанное основание» доказательства
- Независимость (в логике и математике)
- Неклассическая логика, см.: Логика неклассическая. Необходимость (логическая)
- Необходимые и достаточные условия (в логике и математике)
- Непосредственное умозаключение (в традиционной логике)
- Неправильное умозаключение, см.: Умозаключение.
- Непредикативное определение
- Непротиворечивость
- Непротиворечия закон
- Несобственные символы, см.: Символы собственные и несобственные.
- Нечеткое множество
- Неясность
- Номологическое высказывание (от греч. Nomos - закон, logos — учение, понятие)
- Обобщение (лат. Generalisatio)
- Обозначения отношение
- Обоснование
- Обоснование оценок
- Образец
- Обращение (лат. Conversio)
- Общее понятие, см.: Понятие. Общее суждение, см.: Суждение. Объединение (сложение) классов (множеств)
- Объективность
- Объектный (предметный) язык
- Объяснение
- Ограничение понятия
- Омонимия (от греч. Homos — одинаковый, опута — имя)
- Оператор (от лат. Operator — действующий)
- Описание, см.: Высказывание дескриптивное. Описание состояния (англ. State description)
- Описательное высказывание, см.: Высказывание дескриптивное. Описательно-оценочное высказывание, см.: Высказывание дескриптивное, Оценочное высказывание. Определение (лат. Definitio)
- Определение аксиоматическое
- Определение генетическое (от греч. Genesis - происхождение, источник)
- Определение классическое, или: Определение через род и видовое отличие,
- Определение неявное
- Определение номинальное
- Определение операциональное
- Определение остенсивное (от лат. Ostentus - показывание, выставление напоказ)
- Определение реальное
- Определение явное
- Опровержение
- Осмысленность
- Основание и следствие
- Отношение (в логике) отождествляется с многоместным предикатом.
- Отношение включения класса в класс, см.: Множеств теория. Отношение нерефлексивное (иррефлексивное)
- Отношение принадлежности элемента классу (множеству), см.: Множеств теория. Отношение рефлексивное
- Отношение симметричное
- Отношение типа равенства
- Отношение транзитивное
- Отношение функциональное (однозначное)
- Отрицание
- Отрицательное высказывание, см.: Отрицание. Оценка, см.: Оценочное высказывание. Оценок логика
- Оценочная модальность, см.: Аксиологическая модальность. Оценочное высказывание
- Ошибка логическая
- Парадигма (от греч. Paradeigma — пример, образец)
- Парадокс (греч. Paradoxos)
- Парадоксы импликации
- Паралогизм (от греч. Paralogismos — неправильное, ложное рассуждение)
- Паранепротиворечивая логика
- Переменная
- Пересечение классов (множеств)
- Подмена тезиса (лат. Ignoratio elenchi)
- Подтверждение
- Познание
- Полемика
- Полнота (в логике и дедуктивных науках)
- Понимание
- Понятие
- Порочный круг
- «После этого значит по причине этого» (лат. Post hoc ergo propter hoc)
- Поспешное обобщение
- Правило вывода
- Правило локка
- Прагматика
- Правило отделения, см.: Модус поненс. Превращение (лат. Obversio) в традиционной логике
- «Предвосхищение основания» (лат. Petitio principii)
- Предикат (от лат. Praedicatum - сказанное)
- Предложение
- Предметная область, или: Универсум рассуждения, область теории,
- Предпочтений логика
- Предсказание
- Прескриптивное высказывание, см.: Нормативное высказывание. Приведение к абсурду, или: Редукция к абсурду, приведение к нелепости (лат. Reductio ad absurdum),
- Частный закон приведения к абсурду
- Принцип взаимозаменимости
- Принцип многозначности
- Принцип объемности (экстенсиональности) (от лат. Extentio — протяжение)
- Принцип однозначности
- Принцип предметности
- Причинная связь
- Причинности логика
- Проблема (от греч. Problema — преграда, трудность, задача)
- Пропозициональная связка
- Пропозициональная функция
- Противоположность логическая
- Противопоставление предикату
- Противоречие
- Равенство
- Равнозначность (равносильность, эквивалентность)
- Равнообъемность
- Разделительное суждение
- Разделительно-категорическое умозаключение
- Разделительно-условное умозаключение, см.: Дилемма. Разрешающая процедура, см.: Разрешения проблема. Разрешения проблема, или: Разрешимости проблема,
- Разрешимая теория
- Рациональность (от лат. Ratio - разум)
- Рекурсивное определение (от лат. Recurso - возвращаюсь)
- Релевантная импликация, см.: Релевантная логика. Релевантная логика
- Референт (от лат. Refero — называть, обозначать)
- Референция
- Свойство
- Семантика логическая
- Семантическая категория
- Семантические парадоксы, см.: Антиномия. Семантическое понятие истины
- X истинно º р.
- Семиотика
- Силлогизм (от греч. Sillogismos) категорический
- Символ (от греч. Symbolon — знак, опознавательная примета)
- Символика логическая
- Символическая логика
- Символы собственные и несобственные
- Синкатегорематическое выражение, см.: Символы собственные и несобственные. Синонимия
- Синтаксис (греч. Syntaxis — построение, порядок)
- Синтаксическая категория
- Следование, см.: Логическое следование. Следствие, см.: Логическое следование. Сложное высказывание
- Случайность логическая
- Совместимости условие
- Собирательное понятие, см.: Понятие. Совместимость
- Современная логика
- 1. Методология дедуктивных наук.
- 2. Применение логического анализа к опытному знанию.
- 3. Применение логического анализа к оценочно-нормативному знанию.
- 4. Применение логического анализа в исследовании приемов и операций, постоянно используемых во всех сферах научной деятельности.
- Содержание и форма, см.: Логическая форма. Содержание понятия, см.: Понятие. Сорит (от греч. Soros - куча)
- Сравнительные модальности, см.: Абсолютные и сравнительные модальности. Строгая импликация, см.: Импликация, Парадоксы импликации, Логика. Строгость
- Суждение
- Суппозиция (от лат. Suppositio — подкладывание, подмена)
- Существенный признак, см.: Определение понятия. Сходство
- Тавтология
- Теоретическое и эмпирическое
- Теоретическое мышление
- Теория (от греч. Theoria — наблюдение, рассмотрение, исследование)
- 1. Исходные основания т.
- 2. Идеализированный объект т.
- 3. Логика т.
- 4. Совокупность законов и утверждений,
- Теория познания
- Термин (от лат. Terminus — граница, предел, конец ч.-л.)
- Термин теоретический
- Термин эмпирический
- Термины силлогизма - элементы суждений, входящих в состав силлогизма (см.: Силлогизм). Типов теория
- Типология (от греч. Tipos — отпечаток, форма)
- Тождества закон
- Тождество
- Традиционная логика
- Транзитивности закон
- Умозаключения из суждений с отношениями
- Умозаключение
- Умозаключение статистическое
- Универсум рассуждения, см.: Предметная область. Условное высказывание
- Условное умозаключение
- Учетверение терминов (лат. Quaternio terminorum)
- Факт (от лат. Factum — сделанное, совершившееся)
- Фальсификация (от лат. Falsus — ложный, facio - делаю)
- Фигура силлогическая, см.: Силлогизм. Физическая модальность, см.: Онтологическая модальность. «философская логика»
- Формализация (от лат. Forma — вид, образ)
- Формальная логика, или: л о г и к а,
- Формальная суппозиция, см.: Суппозиция. Формальная теория
- Формы мысли, или: Формы мышления,
- Функтор
- Функция (от лат. Functio — осуществление, выполнение)
- Целевое обоснование
- Цель-средство
- Частное суждение
- Эвристика (от греч. Heurisko - отыскиваю, открываю)
- Эйлера круги
- Эквивалентность, или: Равнозначность,
- Эквивокация — логическая ошибка,
- Экзистенциальное высказывание (от лат. Existentia - существование)
- Эклектика
- Экспликация (от лат. Explicatio - разъяснение)
- Экстенсиональность
- Экстенсиональный контекст
- Эллиптическое высказывание
- Эмпирическое и теоретическое, см.: Теоретическое и эмпирическое. Энтимема (от греч. In thymos — в уме)
- Эпихейрема (от греч. Epiheirema — умозаключение)
- Эристика (от греч. Eristika — искусство спора) — искусство ведения спора.
- «Юма принцип»
- Языка функции, или Употребление языка,
- Язык логики
- Язык науки
- Язык семантически замкнутый
- Ясность
- Ивин Александр Архипович, Никифоров Александр Леонидович словарь по логике
- 117571, Москва, проспект Вернадского, 88,