logo search

Закон двойного отрицания

- закон логики, позволяющий отбрасывать двойное отрицание. Его можно сформулировать так: от­рицание отрицания дает утверждение, или: повторенное дважды отрицание ведет к утверждению. Напр.: «Если неверно, что Вселен­ная не является бесконечной, то она бесконечна».

3. д. о. был известен еще в античности. В частности, древнегреческие философы Зенон Элейский и Горгий излагали его так: если из отри­цания к.-л. высказывания следует противоречие, то имеет место двой­ное отрицание исходного высказывания, т. е. оно само.

С применением символики логической (р - некоторое высказы­вание; à - условная связь, «если, то»; ~ - отрицание, «неверно, что») закон записывается так:

~ ~ p à p, если неверно, что неверно р, то верно р.

Другой закон логики, говорящий о возможности не снимать, а вводить два отрицания, принято называть обратным 3. д. о.: ут-

[102]

верждение влечет свое двойное отрицание. Напр.: «Если Шекспир писал сонеты, то неверно, что он не писал сонеты». Символически:

pà ~ ~p,

если р, то неверно, что не-р.

Объединение этих законов дает т. наз. полный 3. д. о.: двойное отрицание равносильно утверждению. Напр.: «Планеты не непод­вижны в том и только том случае, если они движутся». Символи­чески (=эквивалентность, «если и только если»):

~ ~Р = Р, неверно, что не-р, если и только если верно р.