15. Механистическая картина мира
Первая научная революция произошла в период конца XV – XVI в.в., в период, относящийся к эпохе Возрождения. Н. Коперник обосновывает утверждение о том, что Земля не является центром мироздания, что подорвало устоявшиеся религиозные догматы. На смену геоцентрической системы мира Птолемея приходит гелиоцентрическая система мира Н. Коперника. С появлением учения Н. Коперника, можно сказать, наука впервые указала на то, какую существенную роль она может играть в решении мировоззренческих проблем.
Последователь Коперника Галилео Галилей выступил также противником механики и астрономии Аристотеля. Он опровергал учение Аристотеля о том, что тяжелые тела падают быстрее, чем легкие. Он впервые использовал понятие инерции. Согласно господствовавшей тогда аристотелевской концепции понятие инерции не существовало и считалось, что всякое движение, кроме естественного, требует непрекращающегося воздействия, и прекращение воздействия приводит к немедленному прекращению движения. Галилей выступил против такой концепции.
Используя понятие инерции, Галилей объяснил, почему Земля при обращении вокруг Солнца и вращении вокруг своей оси сохраняет как атмосферу, так и все, что находится в атмосфере и на земной поверхности. Принцип относительности Галилея утверждает, что если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе координат, движущейся прямолинейно и равномерно относительно первой, т.е. в инерциальных системах отсчета. Все законы механики во всех инерциальных системах отсчета проявляются одинаково, в них пространство и время носят абсолютный характер.
В своих философских воззрениях, Галилей стоит на позициях новой основанной им механической натурфилософии, механистического естествознания. Он исходит из признания бесконечной и вечной Вселенной, всюду единой. Утверждает, что небесный мир состоит из таких же физических тел, как и Земля. Все явления природы, по его мнению, подчиняются одинаковым законам механики. Сама материя как реальная субстанция вещей состоит из абсолютно неизменных атомов, всевозможные ее проявления сводятся к чисто количественным свойствам, поэтому все в природе можно измерить и вычислить.
Выдающийся ученый И. Кеплер занимался исследованием небесной сферы и работал над составлением звёздных таблиц. И. Кеплер прославился, в первую очередь, формулировкой трех законов движения планет относительно солнца, которые представляли собой обобщение данных астрономических наблюдений. Кроме того, он разработал теорию солнечных и лунных затмений, предложил несколько способов их предсказания, уточнил величину расстояния между землей и солнцем…
Математическое описание физических закономерностей - французский ученый Рене Декарт (1596-1650 гг.). Декарт заложил основы аналитической геометрии, применил ее аппарат к описанию перемещения тел, разработал понятия переменной величины и функции. В «Началах философии», опубликованных в 1644 г., Декарт сформулировал три закона природы.
Первые два выражают принцип инерции, в третьем формулируется закон сохранения количества движения.
Велика роль французского ученого и в развитии астрономии, Вселенная рассматривалась им как саморазвивающаяся система. Первоначально она находилась в хаотическом состоянии, затем движение частиц материи приобрело характер центробежных вихревых движений, в результате которых образовались небесные тела, включая Солнце и планеты. Таким образом, возникновение Солнечной системы и всей Вселенной происходит, по Декарту, без божественного вмешательства, на основе законов природы.
Научное наследие И. Ньютона весьма обширно. Он разработал, независимо от Г.В. Лейбница, дифференциальное и интегральное исчисление, которым успешно пользовался при решении сложнейших задач в механике. Ему принадлежит открытие законов динамики и закона всемирного тяготения. Главное сочинение - “Математические начала натуральной философии” (1687 г.). В этой работе И. Ньютону удалось математически вывести все известные к тому времени факты механики земных и небесных тел, в том числе и кеплеровы законы движения планет.
Механистическая картина мира была основана на следующих принципах.
1. Мир строился на едином фундаменте — на законах механики Ньютона. Все наблюдаемые в природе превращения, а также тепловые явления на уровне микроявлений сводились к механике атомов и молекул, их перемещениям, столкновениям, сцеплениям, разъединениям.
2. В механистической картине мира все причинно-следственные связи однозначные, здесь господствует лапласовый детерминизм. В мире существует точность и возможность предопределения будущего.
3.В механистической картине мира отсутствует развитие — в целом таков, каким он был всегда. Механистическая картина мира фактически отвергала качественные изменения, сводя все к чисто количественным изменениям.
4. Механистическая картина исходила из представления, что микромир аналогичен макромиру. Считалось, что механика микромира может объяснить закономерности поведения атомов и молекул.
- 1. Понятие науки
- Философия и наука. Проблема взаимосвязи.
- 3. Наука, паранауки, квазинаука, лженаука.
- 4 Понятие метода. Классификация методов. Общенаучные методы эмпирического познания.
- 5. Методы эмпирического исследования (наблюдение, эксперимент, измерение)
- 6 Общенаучные методы теоретического познания
- 8 Общенаучные методы, применяемые и на эмпирическом, и на теоретическом уровнях познания
- 7. Общенаучные методы научного познания: абстрагирование, идеализация, мысленный эксперимент.
- 9 Формы научного знания
- 10 Структура и функции научной теории. Познавательная ценность научной теории.
- 11. Основные исторические этапы в развитии науки. Понятие научной рациональности и её типология.
- 12 Становление науки античного периода.
- Наука средневекового периода исторического развития.
- 15. Механистическая картина мира
- 17. Зарождение и формирование эволюционных идей в науке.
- 16 Научные открытия конца 19 – начала 20 веков и их влияние на формирование неклассического типа научной рациональности. Своеобразие неклассического типа научной рациональности.
- 18. Научные открытия второй половины 20 века и их влияние на формирование постнеклассического типа научной рациональности. Особенность постнеклассического типа научной рациональности
- 19. Логика открытия: учения ф. Бэкона и р. Декарта
- 20. Образ науки в концепции логического позитивизма. Принцип верификации.
- 21. «Критический рационализм» к. Поппера. Идея роста научного знания и принцип фальсификации.
- 22. Концепция научных революций т. Куна. Понятие «парадигма».
- 23. Концепция развития науки и. Лакатоса.
- 24. Проблема истинности научного знания. Основные концепции истины в науке
- 25. Появление и развитие техники с древнейших времен и до эпохи Нового времени.
- 26 Развитие техники с эпохи Нового времени и до наших дней
- 28 Понятие техники
- 27 Специфика технических наук
- 29 Понимание сущности техники в концепциях х. Ортега-и-Гассета, ф. Дессауэр
- 30 Понимание сущности техники в концепциях о. Шпенглера, м. Хайдеггера
- 31 Становление науки как социального института
- 33 Научно-техническая революция и особенности современной техники
- 34 Место и роль науки в современном обществе. Сциентизм и антисциентизм
- 32. Коллективная деятельность в науке и ее функции.
- Понятие социального института науки и ее функции
- 35. Особенности математического знания. Онтологический статус математических объектов
- 36. Математика в системе наук. Роль математики в развитии научного знания.
- 14. Развитие науки в эпоху Возрождения и Нового времени