logo
шпоры мои

9 Формы научного знания

Научная проблема (от греч. problema – преграда, трудность, задача) вопрос или совокупность вопросов, совокупность исследовательских задач, которую формулирует ученый относительно изучаемого им предмета.

Научная проблема должна быть актуальной, теоретически или практически значимой.

По своей природе научная проблема парадоксальна. Она представляет собой «знание о незнании». Чтобы сформулировать научную проблему, нужно уже многое знать о предмете познания. В некотором смысле, развитие науки происходит как совершенствование формулировок старых проблем и постановка новых. Так, например, К. Поппер в развитии науки выделяет следующие стадии: Р(1) – ТТ – ЕЕ – Р(2), где Р(1) – исходная проблема, ТТ – пробные теории, ЕЕ – стадия устранения ошибок, стадия выбора, уточнения теории, Р(2) – новая научная проблема. Таким образом, наука движется, по Попперу, от проблемы к проблеме.

Чаще всего научные проблемы возникают из проблемных ситуаций, а они, в свою очередь, возникают из противоречий, несоответствий в науке.

Несоответствия могут быть в науке:

1)Несоответствия между эмпирическими данными и теорией. (корпускулярные представления о природе света, разработанные И. Ньютоном, прекрасно описывали явления отражения и преломления света, но не позволяли объяснить явления интерференции и дифракции)

2) Несоответствия в науке могут обнаруживаться внутри научной теории.

3) Несоответствия в науке могут обнаруживаться между различными научными теориями. (например, существовали противоречия между электродинамикой Максвелла и классической механикой Ньютона. )

Огромное количество научных проблем возникает после того, как сформируется новая теория и ее начинают применять для объяснения и описания все новых процессов и систем.

Гипотеза (от греч. hipothesis – основание, предположение) – это предположение, вводимое в качестве предварительного условного объяснения некоторого явления.

Гипотеза, по сути своей, является формой вероятного знания.

Гипотеза проходит через стадию эмпирического подтверждения или опровержения; подтверждаясь, она принимает форму достоверного знания, после же опровержения она отбрасывается.

Эмпирическая проверка (подтверждение или опровержение) гипотезы чаще всего осуществляется через сопоставление следствий, выводимых из гипотезы, с результатами наблюдений, экспериментов, измерений

Иногда возможны прямые эмпирические проверки гипотезы. Такая возможность имеет место, когда гипотеза указывает на существование нового объекта (звезды, планеты, элементарной частицы) или нового явления.

Научные факты (с лат. factum – сделанное, свершившееся) – это зафиксированные в языке науки знания о действительных событиях, связях, свойствах изучаемых объектов.

Научные факты – это результат познания действительности на эмпирическом уровне. Иногда научные факты могут относиться к тем же предметам и явлениям, что и факты здравого смысла, которые человек приобретает при обыденно-практическом познании, – и там, и тут факты служат как фиксация происшествий, событий, явлений. Тем не менее, научные факты несут несколько иную информацию. Во-первых, они устанавливаются на основе научных методов познания, проходят через процедуру эмпирического обобщения, статистической обработки и обладают более высокой степенью достоверности. Во-вторых, научные факты – это результат осмысления в свете определенных научных теорий.

Научные факты образуют эмпирический базис соответствующей научной теории. Научные теории создаются таким образом, чтобы объяснять и описывать факты, представляющие предметную область этой теории. Если обнаруживаются факты, не укладывающиеся в рамки данной теории, то теория корректируется; выдвигаются гипотезы, ограничения; либо же начинается формирование новой научной теории. В то же время новая научная теория не только описывает и объясняет уже известные факты, но и предсказывает новые факты, т.е. участвует в формировании новых научных фактов.

Законы науки составляют отличительный признак научного знания от ненаучного.

Закон представляет собой утверждение, фиксирующее определенную связь между явлениями и предметами. И эта связь характеризуется такими чертами, как общность, т.е. связь относится ко всем предметам и явлениям определенного типа; существенность, т.е. связь выделяет наиболее важные, значимые стороны явления или предмета; необходимость, т.е. связь проявляется с необходимостью при соответствующих условиях; повторяемость; устойчивость.

Существуют разные типы законов.

По степени общности. Есть общие законы – законы, характерные для большого круга явлений и применяющиеся в разных науках; пример тому – закон сохранения энергии. А есть частные законы – законы, отражающие связи определенного класса явлений; например, динамические законы, биологические или социальные законы.

Законы подразделяют на законы функционирования и законы развития. Законы функционирования фиксируют моменты устойчивости, повторяемости, стабильности в функционирующих системах. Отличительная черта функционирующих систем - последующие состояния этих систем закономерно воспроизводят предыдущие состояния; (например: колебательные движения маятника или процессы в двигателе внутреннего сгорания.) Законы же развития фиксируют связь между различными стадиями развивающейся системы. Отличительной чертой развития является то, что это необратимый, инновационный процесс; (например: закон перехода количественных и качественных изменений или закон смены формаций.)

Законы также можно подразделять на динамические и статические. Динамические законы устанавливают однозначную связь между предметами или между разными состояниями изучаемой системы; например, законы классической механики. Статистические же законы устанавливают вероятностную связь между предметами или между разными состояниями изучаемой системы; например, законы статистической физики, законы квантовой механики.

В составе научной теории законы выполняют ряд важнейших функций, которые здесь стоит перечислить:

  1. Законы ограничивают предметную область, к которой могут относиться приобретаемые с их помощью эмпирические знания. (Например, первый закон Ньютона выделяет предметную область, ограниченную инерциальными системами отсчёта.)

  2. Законы содержат в себе информацию об условиях, в которых могут проводиться наблюдения и эксперименты. (Например, соблюдение таких условий требует действие закона Кулона: электрически заряженные частицы должны быть неподвижными и достаточно малыми по сравнению с расстоянием между ними.)

  3. Законы позволяют осуществить формальный вывод одних единиц знания из других.

  4. Законы формулируют запреты и выполняют в этом смысле защитную функцию. Они указывают, какие ситуации, свойства, отношения и процессы запрещено рассматривать в рамках данной теории. (Например, второй закон термодинамики, запрещающий, в частности, перенос тепла от холодного тела к горячему.)