14. Развитие науки в эпоху Возрождения и Нового времени
Первая научная революция произошла в период конца XV – XVI веков, в период, относящийся к эпохе Возрождения. Именно в это время появляется учение польского астронома Н. Коперника. Копер-ник обосновывает утверждение о том, что Земля не является центром мироздания, и что «солнце, как бы восседая на царском престоле, управляет вращающимся около него семейством светил». Таким образом, на смену геоцентрической (от греч. gé – земля) системы мира Птолемея приходит гелиоцентрическая (от греч. helios – солнце) система мира Н. Коперника.
С появлением учения Н. Коперника, можно сказать, наука впер-вые указала на то, какую существенную роль она может играть в решении мировоззренческих проблем. Гелиоцентрическая система мира Н. Коперника подорвала устоявшиеся догматы религиозного мировоззрения, которые опирались на считавшуюся в то время неопровержимой геоцентрическую систему мира Птолемея. По этой причине католическая церковь подвергла учёного гонениям, а его главный труд «Об обращении небесных сфер» был занесён в папский «Индекс» запрещенных.
Однако «революционность» этого учения проявилась не только в борьбе с религиозными догматами. Можно заметить, что гелиоцен-трическая система мира основывается на предположении о том, что истинное движение, оказывается, может обладать иной наглядностью, чем та, которая дает визуальное наблюдение (ведь мы наблюдаем движение Солнца вокруг Земли, а не наоборот), – это предположение по своей значимости можно расценивать как переворот в научном мышлении, переворот, открывающий перед разумом человека богатые перспективы.
«Наконец, следует подчеркнуть и то, что в отличие от птолеме-евской астрономии, опиравшейся на аристотелевскую (качественную) механику, гелиоцентрическая система не имела прочной механической базы и стимулировала её создание. Она не столько завершала старые наблюдения, сколько стимулировала новые, ибо, устранив ряд прежних противоречий и несоответствий и продемонстрировав свою способность решать сложнейшие проблемы (например, вычислять расстояние между планетами было недоступно Птолемею), она оставила целый ряд вопросов открытыми. Именно эта открытость и делала её столь привлекательной для последующих исследований. Таким образом, в отличие от системы Птолемея система Коперника не завершала, а открывала новую эру исследований в астрономии» [13, с. 114].
Одним из сторонников учения Н. Коперника был Д. Бруно, ко-торый вообще отрицал наличие какого-либо центра вселенной. В учении Д. Бруно вселенная, будучи бесконечной, заключала в себе множество систем подобных нашей Солнечной системе.
Вторая научная революция произошла ориентировочно в XVII веке, в эпоху Нового времени. Собственно говоря, именно эту эпоху и связывают с эпохой рождения современной науки, фундамент которой был заложен такими выдающимися учеными как Г. Галилей, И. Кеплер и И. Ньютон.
В учении Г. Галилея, применявшим научные методы познания, содержались основы – фундаментальные принципы и законы – классической механики (например, принцип существования инерци-альных систем отсчета и закон свободного падения тел). Кроме того, Г. Галилей открыл законы колебания маятника, экспериментально нашел вес воздуха, установил вращение Солнца вокруг своей оси, обнаружил спутники у Юпитера… и этот перечень заслуг далеко не полный. В своей научной деятельности Г. Галилей отстаивал взгляды Н. Коперника, справедливость которых он раскрыл в знаменитой своей работе «Диалог о двух системах мира – птолемеевой и коперниковой».
Выдающийся ученый И. Кеплер занимался исследованием небесной сферы и работал над составлением звёздных таблиц. И. Кеплер прославился, в первую очередь, формулировкой трех законов движения планет относительно Солнца, которые представляли собой обобщение данных астрономических наблюдений. Кроме того, он разработал теорию солнечных и лунных затмений, предложил не-сколько способов их предсказания, уточнил величину расстояния между Землей и Солнцем…
Научное наследие И. Ньютона весьма обширно. Он разработал, независимо от Г. В. Лейбница, дифференциальное и интегральное исчисление, которым успешно пользовался при решении сложнейших задач в механике. Ему принадлежит открытие законов динамики и закона всемирного тяготения. В своём главном сочинении «Матема-тические начала натуральной философии», опубликованном в 1687 г., И. Ньютон возвел величественное здание механики, фундамент которого составили постулаты движения. В этой работе И. Ньютону удалось математически вывести все известные к тому времени факты механики земных и небесных тел, в том числе и кеплеровы законы движения планет.
-
Понятие науки. Классификация наук. Особенности научного знания
-
Философия и наука. Проблема взаимосвязи философии и науки
-
Наука, паранауки, квазинаука, лженаука.
-
Понятие метода. Классификация методов научного познания. Взаимосвязь метода и предмета познания.
-
Методы эмпирического исследования (наблюдение, эксперимент, измерение).
-
Методы теоретического познания: формализация, аксиоматический метод, гипотетико-дедуктивный метод.
-
Общенаучные методы научного познания: абстрагирование, идеализация, мысленный эксперимент.
-
Общенаучные методы научного познания: анализ, синтез, индукция (индукция математическая и индукция в эмпирическом исследовании), дедукция, аналогия и моделирование.
-
Формы научного знания: научный факт, проблема, гипотеза, закон.
-
Структура и функции научной теории. Познавательная ценность научной теории.
-
Основные исторические этапы в развитии науки. Понятие научной рациональности и её типология.
-
Становление науки в античности.
-
Наука средневекового периода исторического развития.
-
Развитие науки в эпоху Возрождения и Нового времени.
-
Зарождение, формирование и кризис механистической картины мира 17-18
-
Научные открытия 19 –20 веков и их влияние на формирование неклассического типа научной рациональности. Своеобразие неклас. типа научной рац-ти.
-
Зарождение и формирование эволюционных идей в науке.
-
Научные открытия второй половины 20 века и их влияние на формирование постнеклас. типа научной рациональности
-
Логика научного открытия в учениях Ф. Бэкона и Р. Декарта.
-
Образ науки в концепции логического позитивизма. Принцип верификации
-
«Критический рационализм» К. Поппера. Идея роста научного знания и принцип фальсификации.
-
Концепция научных революций Т. Куна. Понятие «парадигма».
-
Концепция развития науки И. Лакатоса.
-
Проблема истинности научного знания. Основные концепции истины в науке.
-
Появление и развитие техники с древнейших времен и до эпохи Нов.вр.
-
Развитие техники с эпохи Нового времени и до наших дней.
-
Особенности технических наук.
-
Понятие техники. Проблема взаимосвязи науки и техники.
-
Понимание сущ-ти техники в концепциях Х. Ортеги-и-Гассета и Ф. Дессауэра.
-
Понимание сущности техники в концепциях О. Шпенглера и М. Хайдеггера.
-
Становление науки как социального института.
-
Коллективная деятельность в науке и ее функции.
-
Научно-техническая революция и особенности современной техники.
-
Место и роль науки в современном обществе. Сциентизм и антисциентизм.
-
Особенности математического знания. Онтологический статус мат. объектов.
-
Математика в системе наук. Роль математики в развитии научного знания.
- 1. Понятие науки
- Философия и наука. Проблема взаимосвязи.
- 3. Наука, паранауки, квазинаука, лженаука.
- 4 Понятие метода. Классификация методов. Общенаучные методы эмпирического познания.
- 5. Методы эмпирического исследования (наблюдение, эксперимент, измерение)
- 6 Общенаучные методы теоретического познания
- 8 Общенаучные методы, применяемые и на эмпирическом, и на теоретическом уровнях познания
- 7. Общенаучные методы научного познания: абстрагирование, идеализация, мысленный эксперимент.
- 9 Формы научного знания
- 10 Структура и функции научной теории. Познавательная ценность научной теории.
- 11. Основные исторические этапы в развитии науки. Понятие научной рациональности и её типология.
- 12 Становление науки античного периода.
- Наука средневекового периода исторического развития.
- 15. Механистическая картина мира
- 17. Зарождение и формирование эволюционных идей в науке.
- 16 Научные открытия конца 19 – начала 20 веков и их влияние на формирование неклассического типа научной рациональности. Своеобразие неклассического типа научной рациональности.
- 18. Научные открытия второй половины 20 века и их влияние на формирование постнеклассического типа научной рациональности. Особенность постнеклассического типа научной рациональности
- 19. Логика открытия: учения ф. Бэкона и р. Декарта
- 20. Образ науки в концепции логического позитивизма. Принцип верификации.
- 21. «Критический рационализм» к. Поппера. Идея роста научного знания и принцип фальсификации.
- 22. Концепция научных революций т. Куна. Понятие «парадигма».
- 23. Концепция развития науки и. Лакатоса.
- 24. Проблема истинности научного знания. Основные концепции истины в науке
- 25. Появление и развитие техники с древнейших времен и до эпохи Нового времени.
- 26 Развитие техники с эпохи Нового времени и до наших дней
- 28 Понятие техники
- 27 Специфика технических наук
- 29 Понимание сущности техники в концепциях х. Ортега-и-Гассета, ф. Дессауэр
- 30 Понимание сущности техники в концепциях о. Шпенглера, м. Хайдеггера
- 31 Становление науки как социального института
- 33 Научно-техническая революция и особенности современной техники
- 34 Место и роль науки в современном обществе. Сциентизм и антисциентизм
- 32. Коллективная деятельность в науке и ее функции.
- Понятие социального института науки и ее функции
- 35. Особенности математического знания. Онтологический статус математических объектов
- 36. Математика в системе наук. Роль математики в развитии научного знания.
- 14. Развитие науки в эпоху Возрождения и Нового времени