logo search
disk / Философия,логика гуманитас

Отношения между суждениями

Между суждениями существуют логические отношения. Суждения, как и понятия, могут быть сравнимыми и несравнимыми, совместимыми и несовместимыми. Но есть существенные различия, вызванные их различной логической структурой. Если сравнимые понятия соотносятся друг с другом по их объему, то между сравнимыми суждениями имеются многообразные отношения, прежде всего, по их истинностным значениям. Анализ этих отношений предполагает выяснение таких вопросов: могут ли рассматриваемые суждения быть вместе истинными, вместе ложными, обусловливает ли истинность одного истинность другого и ложность одного ложность другого. Такой анализ имеет важное теоретическое и практическое значение, но его осуществление имеет свою специфику относительно простых и сложных суждений, поскольку они различаются своей логической структурой.

Отношения суждений по их истинностным значениям исследуются в логике между сравнимыми суждениями.

Несравнимые простые суждения имеют разные субъекты и предикаты, например: «Закон суров» и «Небо ясное». Истинность и ложность таких суждений не зависит друг от друга. Сравнимые простые суждения имеют одинаковые субъект и предикат (поэтому они и сравнимы по содержанию), но различаются количественными и качественными характеристиками логической формы. Несравнимые сложные суждения включают в себя полностью или частично разные по содержанию простые суждения. Например, суждения «Прокуроры и следователи имеют юридическое образование» и «Прокуроры и следователи стоят на страже законности». Сравнимые сложные суждения включают одинаковые исходные простые суждения, а различаются типом связи между ними (то есть логическими союзами). Например: «Кража и мошенничество строго караются по закону», «Кража или мошенничество строго караются по закону», «Неверно, что кража и мошенничество строго караются по закону».

Между сравнимыми суждениями выделяются два типа отношений: совместимость и несовместимость. Суждения рассматриваются как совместимые, если они могут быть одновременно истинными, и как несовместимые, если они не могут быть одновременно истинными.

Совместимость бывает трех видов: эквивалентность, подчинение и частичная совместимость.

        1. Суждения эквивалентны, если они всегда принимают одинаковые истинностные значения. Простые категорические суждения (А, Е, J, О) находятся в отношении эквивалентности, если они различны по количеству и качеству, и одно из них стоит под отрицанием: ~ А эквивалентно О («Неверно, что все юристы адвокаты» эквивалентно «Некоторые юристы не адвокаты»); ~ О эквивалентно А («Неверно, что некоторые адвокаты не юристы» эквивалентно «Все адвокаты юристы»); ~ J эквивалентно Е («Неверно, что некоторые студенты профессора» эквивалентно «Ни один студент не профессор»); ~ Е эквивалентно J («неверно, что ни один гриб не ядовит» эквивалентно «Некоторые грибы ядовиты»).

Сложные суждения находятся в отношении эквивалентности, когда при одних и тех же значениях истинности исходных простых суждений они принимают одинаковые значения. Это всегда можно установить построением истинностных таблиц для рассматриваемых сложных суждений.

        1. Суждение находится в отношении подчинения к другому (подчиняющему), если оно истинно во всех тех случаях, когда истинно подчиняющее. Это отношение имеет место между простыми категорическими суждениями, у которых количество различно, а качество одно и тоже. В таком отношении находятся: общеутвердительные (А) и частноутвердительные (J) суждения; общеотрицательные (Е) и частноотрицательные (О) суждения. Здесь действуют такие закономерности: (1) из истинности общего (А или Е) следует соответственно истинность частного (J или О), но не наоборот; (2) из ложности частного (J или О) следует ложность общего (А или Е), но не наоборот. Например, если истинно «Все студенты нашей группы – успевающие» (А), то тем самым истинно «Некоторые студенты нашей группы успевающие» (J). В свою очередь, если ложно «Некоторые люди вправе нарушать закон» (J), то тем более ложно, что «Все люди вправе нарушать закон» (А).

Отношение подчинения в сложных суждениях имеет свойства логического следования, которое характеризуется тем, что при истинности подчиняющего суждения В подчиненное суждение С всегда истинно, и не может быть так, что суждение В истинно, а суждение С – ложно. Например: «Если у человека повышенная температура (В), то он болен (С)». При наличии температуры у человека (В) – истинно, следует с необходимостью истинность суждения (С). Но при ложности В, суждение С может быть как истинным, так и ложным.

        1. Отношение частичной совместимости также имеет место как между простыми, так и сложными суждениями. Для этого отношения характерна следующая закономерность: невозможна совместная ложность суждений, находящихся в отношении частичной совместимости. В случае простых суждений – это отношение между суждениями одинакового количества, но разного качества: между частноутвердительными (J) и частноотрицательными (О) суждениями. Из ложности одного из них следует истинность другого, но не наоборот: из истинности одного из них не следует с необходимостью ложность другого – оно также может быть истинным. Эту закономерность особо следует учитывать в практике мышления. Так, при истинности (J) – «Некоторые следователи независимы» может быть истинным и (О) – «Некоторые следователи не являются независимыми». Но при ложности суждения (J) – «Некоторые следователи независимы» необходимо будет истинным противоположное по качеству суждение, то есть (О) – «Некоторые следователи не являются независимыми».

Рассмотрим теперь несовместимые суждения. Различают два вида несовместимости: противоречие и противоположность.

Противоречие – это такое отношение между суждениями, при котором истинность одного необходимо влечет ложность другого и наоборот. Иными словами, противоречивые суждения не могут вместе быть ни истинными, ни ложными. Среди простых суждений это отношение имеет место между: общеутвердительными (А) и частноотрицательными (О) суждениями; общеотрицательными (Е) и частноутвердительными (J) суждениями. Так, если ложно суждение «Все следователи независимы», то истинно «Некоторые следователи не являются независимыми». Отношение противоречия между сложными суждениями означает, что их истинностные значения могут лишь исключать друг друга.

Противоположность между суждениями проявляется в том, что данные суждения не могут быть вместе истинными, но могут быть вместе ложными. Для этого отношения характерна закономерность, обратная той, которая характерна для отношения частичной совместимости: если одно из двух суждений истинно, то другое необходимо ложно, но при ложности одного из них другое может быть как истинным, так и ложным. Иными словами, возможна ложность обоих суждений.

В случае простых суждений, это отношение имеет место между общеутвердительными (А) и общеотрицательными (Е) суждениями. Так, если истинно (А) – «Все адвокаты – юристы», то ложно (Е) – «Ни один адвокат не юрист». Но если ложно (А) – «Все свидетели правдивы», то из него не следует истинность суждения (Е) – «Ни один свидетель не правдив», оно тоже ложно. Но в других случаях (Е) может быть истинным. Так, если ложно суждение (А) – «Все граждане вправе нарушать закон», то истинно (Е) – «Ни один гражданин не вправе нарушать закон».

Знание отношений между суждениями по их истинным значениям важно в познавательном и практическом планах, поскольку помогает избегать возможных ошибок в собственных рассуждениях, позволяет грамотно анализировать различные контексты, высказывания оппонентов. Часто встречаются ситуации, когда суждениями оперируют как исключающими друг друга. Например, когда кто-то выдвигает суждение в форме «Некоторые S есть Р», а другой – в форме «Некоторые S не есть Р».

Логический же анализ этих суждений показывает, что суждения, высказанные в такой форме, не исключают друг друга, а являются частично совместимыми, и оба могут оказаться истинными. Весьма часто также в споре из истинности частного суждения (J или О) выводят истинность общего (А или Е) соответственно, что нарушает правильность отношений между ними.

В дискуссии, споре, в частности по юридическим и экономическим вопросам, чтобы опровергнуть общее ложное суждение, часто используют противоположное ему общее суждение. Но так легко попасть впросак: оно тоже может оказаться ложным. В логическом отношении для точного опровержения достаточно привести противоречащее суждение (см. схему логического квадрата). Смешение противоположных и противоречащих суждений довольно частая ошибка в практике мышления. Поэтому важно уметь осуществлять логический анализ отношений между суждениями.

Зависимость отношений простых суждений по истинностным значениям от их логической структуры (количественно-качественных характеристик) в логике выражают графической схемой, называемой логическим квадратом: его вершины символизируют четыре вида простых категорических суждений – А, Е, J, О; стороны и диагонали – отношения между этими суждениями.

Рисунок 1

Логический квадрат

J частичная совместимостьО

А противоположность Е

подчинение

подчинение

противоречие

Для определения отношений между простыми категорическими суждениями, нужно:

              1. определить, какого вида эти суждения: А, Е, J, О;

              2. найти соответствующие углы логического квадрата;

              3. посмотреть, какое отношение вписано между ними;

              4. по характеру отношения установить связь истинностных значений для анализируемых суждений.

Например, нужно определить отношение между суждениями: (1) «Не все металлы твердые» и (2) «Некоторые металлы твердые». Для этого осуществим их логический анализ. Прежде всего, определяем вид суждений (1) и (2): второе суждение – частноутвердительное (J) , а первое суждение – общеутвердительное с отрицанием. Превращаем его согласно приведенным выше эквивалентностям (~А эквивалентно О) в эквивалентное суждение – О. Определяем по логическому квадрату отношение между J и О. Отношение между ними – частичная совместимость, что означает, что совместная ложность невозможна, но возможна совместная истинность.

Для определения отношений между сложными суждениями нужно:

        1. определить по главному логическому союзу вид анализируемых сложных суждений;

        2. записать на языке логики высказываний, то есть в виде формул логические формы суждений;

        3. построить их совместную истинностную таблицу;

        4. сравнить истинностные значения формул данных суждений и по их характеру определить вид отношения.

В качестве примера (таблица 4) определим отношения между суждениями: (1) «Он не читает ни детективных, ни исторических романов» и (2) «Он читает либо детективные, либо исторические романы». Первое суждение – конъюнктивное, состоит из двух отрицательных суждений: «Он не читает детективных романов» (~А), «Он не читает исторических романов» (~В), соединительный союз () опущен. Символическая запись формы суждения (1): ~А~В. Второе суждение – строго дизъюнктивное, состоит из двух суждений: «Он читает детективные романы» (А), «Он читает исторические романы» (В), которые связаны двойным разделительным союзом «либо..., либо» (). Поэтому символическая запись логической формы суждения (2): АВ. Построим для них совместную истинностную таблицу 4, где А, В – исходные суждения.

Таблица 4

А

В

~А~В

АВ

и

и

л

л

л

л

и

л

л

и

л

и

л

и

и

и

л

и

л

л

и

и

и

л

Сравнивая результирующие столбцы (два крайних справа), которые представляют формулы суждений (1) и (2), видим, что эти суждения не бывают одновременно истинными, значит они несовместимые суждения. Но в первой строке обнаруживаем их совместную ложность, следовательно, они находятся в отношении противоположности.

Задания. Вопросы.

Ответы.

  1. Что такое суждение, какова их языковая форма?

  2. В чем отличие суждения от понятия?

  3. Какова логическая форма (структура) простых суждений?

  4. Как различают суждения по характеру предиката суждения?

  5. По каким логическим характеристикам выделяют виды простых суждений?

  6. Что такое количественная и качественная характеристики простых суждений?

  7. Какие суждения называют категорическими? Назовите их виды.

  8. Что означает распределенность терминов в суждении?

  9. Какие виды сложных суждений Вы знаете и каковы условия их истинности?

  10. Объясните важность анализа логической формы сложных суждений с использованием символического языка.

  11. Каковы основные виды отношений между суждениями?

  12. Какие разновидности совместимых суждений Вы знаете и каковы их истинностные характеристики?

  13. Чем отличается отношение противоречия от отношения противоположности? Покажите это на анализе какого-либо контекста.

Задания. Тесты.

Ответы.

1. Суждения выражаются предложениями:

а) повествовательными;

б) вопросительными;

в) простыми или сложными;

г) восклицательными.

2. Основной логической характеристикой суждений является:

а) структура суждения;

б) истинностное значение;

в) языковое выражение;

г) характер связи.

3. Качество суждения означает:

а) объем субъекта;

б) характер связки;

в) объем предиката;

г) нормативную характеристику.

4. Количество суждения означает:

а) объем субъекта;

б) объем предиката;

в) нормативную характеристику;

г) характер связки.

5. К какому виду относится суждение «Разрешено все, что не запрещено»:

а) общеутвердительное;

б) общеотрицательное;

в) частноутвердительное;

г) частноотрицательное.

6. Выберите правильную распределенность терминов в суждении «Никто не хотел умирать»:

а) субъект – да, предикат – нет;

б) субъект – нет, предикат – да;

в) субъект – нет, предикат – нет;

г) субъект – да, предикат – да.

7. Сложное суждение – это суждение:

а) выраженное сложным повествовательным предложением;

б) образованное из простых с помощью логических союзов;

в) имеющее сложный субъект;

г) имеющее сложный предикат.

8. Вид сложного суждения определяется:

а) характером логической связки;

б) характером простых суждений;

в) структурными элементами;

г) количеством логических связей.

9. Какой логический союз дает истинную связь лишь в одном случае – при истинности обоих его элементов:

а) конъюнкция;

б) дизъюнкция;

в) импликация;

г) эквивалентность.

10. Отношения между суждениями устанавливают:

а) по их истинностным значениям;

б) по их количественным характеристикам;

в) по их качественным характеристикам;

г) по характеру связки.

11. Суждения рассматриваются как совместимые, если они:

а) одновременно могут быть истинными;

б) имеют одинаковые структурные элементы;

в) имеют одинаковые логические союзы;

г) совпадают по содержанию.

Задания. Упражнения.

Ответы.

I. Определите логическую структуру и вид следующих простых суждений.

1. Законность – неотъемлемая часть демократии.

2. Иглой дороги не измерить.

3. «Есть женщины в русских селеньях с спокойною важностью лиц...» (А.Н. Некрасов).

4. Некоторые студенты нашей группы лучше знают немецкий, чем английский.

5. Ошибочно решение о продаже акций.

6. В контрольной работе не было ошибок.

7. «Сияла ночь. Луной был полон сад...» (А.А. Фет).

8. «Незнание – не довод. Невежество – не аргумент» (Спиноза).

9. Волк овце – не товарищ.

II. Определите вид категорических суждений (в случае необходимости, приведя их к явной логической форме) и распределенность терминов в них.

1. Взяточник никогда не бывает честным.

2. «Все модные пороки слывут добродетелями» (Мольер).

3. Острая шутка не есть окончательный приговор.

4. Бумажные деньги, не обеспеченные товарами, дешевеют.

5. Иногда банки становятся банкротами.

6. Не все предприниматели миллионеры.

7. Многие следственные действия имеют своей целью профилактику нарушений.

8. Истинные ученые, как правило, скромны.

III. Запишите символически и определите вид и логическую структуру следующих сложных суждений.

1. Наблюдается спад производства, но нельзя сказать, что высоко выросли цены.

2. Ценные бумаги, как облигации, так и векселя, этой фирмы обесценились.

3. Суд отказывает в иске истцу, если его исковые требования являются незаконными.

4. В уголовном праве ошибка может быть либо фактическая, либо юридическая.

5. Было бы начало, будет и конец.

6. «Кабы молодость да знала,

Кабы старость да могла,

Жизнь так часто не хромала,

Жизнь бы иначе пошла» (Вяземский).

7. «Всякое применение власти для своей правомерности должно быть выражением народной воли и результатом действительности или молчаливого согласия» (Ж.Ж. Руссо).

8. «Если ты сможешь доказать мне свои добрые намерения, то я поверю тебе или же мне придется вызвать полицию и обвинить тебя в лжесвидетельстве» (Г. Каттнер. Источник миров).

9. Деньги – продукт стихийного развития товарных отношений, а не результат договоренности или какого-либо сознательного акта.

10. Законы становятся уважаемыми тогда и только тогда, когда созданы законы достойные уважения, а правительство не нарушает их.

11. Санкции применяются к государству, когда зафиксированы нарушения им международных обязательств или норм международного права.

IV. Построением истинностных таблиц (используя определение логических союзов) определите значения истинности сложных суждений № 7–11 в упражнении III.

V. Установите с помощью определения истинностных значений, равнозначны ли суждения в каждой из следующих пар.

1. Платон мне друг, но истина дороже. Неверно, что Платон мне не друг и мне не дорога истина.

2. Водород бесцветен и не имеет запаха. Неверно, что водород имеет цвет или запах.

3. Если я устал, то не могу работать. Я устал, но могу еще работать.

4. Никто не может быть произвольно лишен гражданства или права изменить его. Неверно, что кто-либо может быть лишен произвольно своего гражданства или права изменить его.

VI. Дайте противоположную, противоречивую и подчиненную формы следующего суждения: «Признаки инфляции проявляются в постоянном росте цен».

VII. Выявите совместимость или несовместимость следующих пар суждений, определите их вид.

1. Он не мог не знать, что нарушает закон. Он мог не знать, что нарушает закон.

2. Не все преступления раскрываются по «горячим следам». Некоторые преступления не раскрываются по «горячим следам».

3. Всяк кулик свое болото хвалит. Нет такого кулика, который бы своего болота не хвалил.

4. Все головоломки имеют решения. Некоторые головоломки не имеют решения.

5. Некоторые экономисты – практики. Некоторые экономисты не практики.

6. Если идет дождь, то крыши мокрые. Дождя нет, а крыши мокрые.

7. Если болезнь запущена, то ее легко распознать, но трудно излечить. Если болезнь не запущена, то ее трудно распознать, но ее легко излечить.

8. Неверно, что Мария либо сестра Валентины, либо ее свояченица. Мария и не сестра Валентины и не ее свояченица.

9. «Если хочется кому-то маринованного спрута – значит, ждет его Калькутта или порт Бордо» (Ю. Ким). Неверно, что не хочется кому-то маринованного спрута и не ждет его Калькутта и Бордо.

VIII. В каком отношении находятся следующие высказывания великих философов?

1. «Мыслю, следовательно, существую» (Декарт).

2. «Существую, следовательно, существую» (И. Кант).

3. «Существую, следовательно, желаю» (А. Шопенгауэр).

IX. Рассуждая от «противного» при доказательстве теоремы «Если в многоугольник не вписывается окружность, то он неправильный», студент формулирует нижеследующие допущения (1 – 4). Какое из них верно? Укажите причину ошибок.

1. Если в многоугольник вписывается окружность, то он правильный.

2. Если многоугольник правильный, то в него вписывается окружность.

3. В многоугольник не вписывается окружность и он правильный.

4. Многоугольник вписывается в окружность и он правильный.

X. Могут ли быть правы и обвинитель, и защитник, сказав на судебном заседании следующее?

1. – Подсудимый виновен, и у него был сообщник.

– Неверно, что если подсудимый виновен, то у него не было сообщников.

2. – Преступник физически слаб или нападение не было внезапным.

– Неверно, что, если нападение было внезапным, то преступник физически не слаб.

3. – Все члены этой группировки – преступники.

– Некоторые члены этой группировки не преступники.

XI. Иванов, Петров, Сидоров обвиняются в подделке документов, подлежащих налоговому обложению. Они дают показания:

Петров: Иванов виноват, а Сидоров не виновен.

Иванов: Если Петров виновен, то виновен Сидоров.

Сидоров: Я не виноват, но хотя бы один из них виноват.

Построив истинностные таблицы полученных суждений, ответьте на следующие вопросы.

1. Совместимы ли показания всех трех подозреваемых?

2. Показания одного из подозреваемых следует из показаний другого. Чьи это показания?

3. Если невиновный говорит правду, а виновный лжет, то кто невиновен, а кто виновен?