logo search
disk / Философия,логика гуманитас

Виды сложных суждений

По характеру логической связи выделяют пять основных видов сложных суждений: соединительные (конъюнктивные), разделительные (дизъюнктивные), условные (импликативные), эквивалентные, отрицаемые.

Соединительное или конъюнктивное суждение – это сложное суждение, образованное из исходных суждений посредством логического союза «и», обозначаемого символом «». Например, суждение: «Сегодня я пойду на лекцию по логике и в кино» является конъюнктивным суждением, состоящим из двух простых суждений (обозначим их соответственно –А, В) «Сегодня я пойду на лекцию по логике» (А), «Сегодня я пойду в кино» (В). Символически данное сложное суждение можно записать как: АВ, где А, В – элементы конъюнкции; «»– символ логического союза – конъюнкции. В русском языке конъюнктивный логический союз выражается многими грамматическими союзами: и, а, но, да, хотя, однако, а также. Нередко подобные грамматические союзы заменяются запятой, двоеточием, точкой с запятой. Например, в суждении «Русские долго запрягают, да быстро ездят».

Конъюнктивное суждение истинно только при истинности всех составляющих его элементов и ложно при ложности хотя бы одного из них (столбец 3).

Знание особенностей истинностного значения конъюнкции имеет особое значение в практике мышления, так как достаточно одного ложного суждения, чтобы придать всей, даже весьма сложной, конъюнктивной мысли ложность. Этот факт лежит в основе многих русских пословиц, например, о том, что делает ложка дегтя в бочке меда. Эту особенность важно учитывать в юридической практике, в дискуссиях – когда выстраивается сложная цепь мыслей, которая при одном ложном звене может распасться. Вместе с тем, достаточно обнаружить хотя бы один ложный аргумент в доводах оппонента, чтобы опровергнуть все его рассуждение в целом.

Разделительное или дизъюнктивное суждение – это сложное суждение, образованное из исходных суждений посредством логического союза «или», обозначаемого символом «». Например, суждение «Право может способствовать экономическому развитию или препятствовать ему» является дизъюнктивным суждением, состоящим из двух простых: «Право может способствовать экономическому развитию», «Право может препятствовать экономическому развитию». Соответственно обозначив их через буквыА, В – выделим его логическую форму: АВ.

Поскольку связка «или» употребляется в двух разных значениях (неисключающем и исключающем), то различают слабую и сильную дизъюнкции соответственно. Выше приведенный пример является слабой дизъюнкцией, так как право одновременно в одном отношении может способствовать развитию экономики, но препятствовать в другом. Слабая дизъюнкция является истинной в тех случаях, когда истинно, по крайней мере, одно из составляющих ее суждений (или оба вместе) и ложна, когда оба составляющих ее суждения ложны (столбец 4).

Сильная дизъюнкция (символ «») отличается от слабой тем, что ее составляющие исключают друг друга. Например: «Преступление может быть умышленным или по неосторожности». Для того, чтобы подчеркнуть строго разделительный, исключающий характер связи, в естественном языке используется усиленная двойная форма разделения: «...либо..., либо», «или..., или», например: «Либо я найду путь, либо я проложу его».Строгая дизъюнкция истинна лишь тогда, когда одно из составляющих ее суждений истинно, а другое – ложно (столбец 5).

Среди дизъюнктивных суждений следует различать также полную и неполную дизъюнкцию, когда соответственно: перечислены все признаки, виды определенного рода или это перечисление остается открытым (неполным), что в естественном языке выражается словами: «и так далее», «и другие».

Дизъюнктивные суждения широко распространены в практике мышления. Именно в них выражается логическая операция деления.

Условное или импликативное суждение – это сложное суждение, в котором суждения объединяются логическим союзом «если..., то» (символ «»), например: «Если правительство нарушает закон, то порождает неуважение к нему», «Если число делится на 2 без остатка, то оно четное». Условное суждение состоит из двух составляющих его суждений. Суждение, выраженное после слова «если», называетсяоснованием или антецедентом (предыдущим), а суждение, расположенное после слова «то», называется следствием или консеквентом (последующим). Формула условного суждения: АВ, где А – основание, В – следствие. При этом, суждения, выполняющие роль основания и следствия, сами по себе могут быть как простыми, так и сложными суждениями.

Образуя условное суждение, прежде всего, имеют в виду, что не может быть так, чтобы то, о чем говорится в основании, имело место, а то, о чем говорится в следствии, отсутствовало. Иными словами, не может случиться, чтобы антецедент был истинным, а консеквент – ложным. Это и определяет то, что условное суждение истинно во всех случаях, кроме одного: когда предшествующее есть, а последующего нет (то есть – суждение по форме АВ – ложно только в одном случае, когда А – истинно, а В – ложно). Это выражено в таблице 1, столбец 6.

В форме условных суждений выражают объективные зависимости в различных областях, в том числе в структуре технологических стандартов, релейно-контактных систем и электрических цепей, в зависимости прав и обязанностей людей, связанные с теми или иными условиями.

Эквивалентное суждение – это сложное суждение, в котором объединяются суждения со взаимной условной зависимостью. Поэтому они также называются двойной импликацией. Они образуются с помощью логического союза «если и только если..., то», который обозначается символом «». Формула эквивалентности:АВ, где А, В – суждения, из которых образуется эквивалентное суждение, например: «Человек имеет право на пенсию по возрасту, если и только если он достиг пенсионного возраста». В естественном языке, в том числе в экономических и юридических текстах, для выражения эквивалентных суждений используются грамматические союзы: «лишь при условии, что..., то», «только тогда, когда..., то», «в том и только в том случае, когда..., тогда».

Условия истинности эквивалентных суждений представлены в столбце 7: эквивалентное суждение истинно в двух случаях – когда оба составляющих его суждения истинны или когда оба ложны. Иными словами, связь (отношение) между элементами эквивалентного суждения можно охарактеризовать как необходимую: истинность А достаточна для признания истинности В и наоборот; ложность А служит показателем ложности В и наоборот.

Отрицаемое суждение – это сложное суждение, образованное с помощью логического союза «неверно, что...» (или просто «не»), который именуется знаком отрицания (символ «~»). В отличие от вышеотмеченных бинарных союзов он относится к одному суждению. Прибавление его к какому-либо суждению означает образование нового суждения, которое находится в определенной зависимости от исходного: отрицаемое суждение истинно, если исходное ложно, и наоборот. Это выражено в столбцах 8, 9. Например, если исходное суждение «Все свидетели правдивы», то отрицаемое «Неверно, что все свидетели правдивы».

Все выделенные виды сложных суждений используются в обычных рассуждениях и контекстах, в том числе технологических, технических, юридических, экономических и правовых. Для более точного уяснения смысла этих контекстов важно овладение навыками логического анализа сложных суждений с использованием символического языка для выражения их логической структуры. Часто для достижения определенности высказывания необходимо выявить главную связь в суждении. Например, высказывание «Преступление совершено А и В или С» не отличается определенностью, поскольку не ясно, какая из двух логических связок – конъюнкция или дизъюнкция – является главной. Поэтому данное высказывание может быть истолковано как конъюнктивное суждение (1): «А и (В или С)», а может и как дизъюнктивное суждение (2): «(А и В) или С». Но по логической значимости, то есть по их истинностному значению, они не эквиваленты. Это можно определить, построив для них истинностные таблицы, и по ним сравнить истинностные значения этих суждений.

С этой целью важно знать, как вообще строятся истинностные таблицы для различных сложных суждений. Осуществляется это следующим образом.

На входе таблицы:

1. Выписывают все простые суждения (А, В, С, D...), входящие в рассматриваемое сложное суждение. Пусть их число будет n.

2. Определяют число к строк в таблице по формуле к = 2n.

3. В столбцах входа таблицы выписывают все возможные комбинации истинностных значений простых суждений в следующем порядке: в самом правом столбце чередуют и и л по одному; во втором справа столбце чередуют подряд два значения и и два значения л; в третьем столбце чередуют подряд четыре значения и и четыре значения л; в четвертом столбце – восемь значений и подряд и восемь значений л подряд и так далее.

На выходе таблицы:

1. Слева направо выписывают логические формы всех сложных суждений, входящих в рассматриваемое суждение, по порядку: в начале суждения первой степени сложности (то есть с одним логическим знаком); затем второй степени (с двумя логическими союзами); далее третьей степени (с тремя логическими союзами) и так до тех пор, пока последнее суждение не будет представлять логическую форму исходного сложного суждения.

2. Столбцы истинностных значений для выписанных логических форм образуют исходя из: (1) смысла логического союза (см. таблицу 1) и (2) значений истинности, которые принимают простые суждения, входящие в данную форму (см. строки входа таблицы).

Мы можем сравнить вышеотмеченные суждения (1) и (2). С этой целью теперь построим таблицу 2 для конъюнктивного суждения (1), выразив его символически как «А(ВС)», итаблицу 3 для дизъюнктивного суждения (2), записав его символически как «(АВ)С».

Таблица 2

Таблица 3

А

В

С

ВС

А(ВС)

А

В

С

АВ

(АВ)С

и

и

и

и

и

и

и

и

и

и

и

и

л

и

и

и

и

л

и

и

и

л

и

и

и

и

л

и

л

и

и

л

л

л

л

и

л

л

л

л

л

и

и

и

л

л

и

и

л

и

л

и

л

и

л

л

и

л

л

л

л

л

и

и

л

л

л

и

л

и

л

л

л

л

л

л

л

л

л

л

Из таблиц 2 и 3 видно, что истинностные значения суждений (1) и (2) не одинаковы (в двух строках – когда одно ложно, другое истинно), и, следовательно, они не эквивалентны, и представляют суждения, выражающие различные связи между их структурными элементами.

Суждение, логическая форма которого принимает значение «истинно» при всех сочетаниях истинностных значений составляющих его простых суждений, называется логически необходимым, а формула, выражающая его форму – тождественно истинной. Такие формулы всегда выражают логический закон. Суждение, логическая форма которого принимает значение как «истинно», так и «ложно», называется логически случайным, а формула – выполнимой.

Таким образом, для осуществления логического анализа формы сложных суждений необходимо записать их символически в виде формулы и построить соответствующие истинностные таблицы с последующим их сравнением.