logo
Методический комплекс новый

12.2. Применяемые методы

На стадии обработки данных ученый старается извлечь максимум полезной информации из результатов проведенной совокупности испы­таний.

Цель анализа данных — выявить тенденции, общие принципы, стоящие за единичными данными, изучить те или иные отношения между индиви­дуальными феноменами, описать структуру области данных. Эмпириче­ский материал оценивается и обрабатывается с разных сторон. Здесь ис­пользуются различные операции и приемы: точные дедуктивные методы, заключения по аналогии, приемы классификации, выдвижение гипотез эмпирического характера. Происходит первичная оценка полученных ре­зультатов; если эти результаты имеют количественный вид, то исследова­тель производит известного рода сглаживание эмпирических данных, ищет и подбирает математическую формулу, максимально точно воспро­изводящую тенденции в эмпирическом материале. Применяются также методы визуализации данных в виде таблиц, графиков, диаграмм и других графических объектов. Их цель — представить материал в форме, наибо­лее адекватной для научного использования. Особенно велико многооб­разие графических объектов в исследованиях, использующих статисти­ческие методы, прежде всего в экономике и теории управления. Здесь применяют множество различных видов графических объектов для широ­кого круга целей. Например, т.н. динамические графики используются для представления и изучения процессов.

Существуют научные области, где результатом обобщения данных ста­новится некоторая совокупность качественных утверждений. Например, в медико-биологических науках в ходе морфологического анализа могут появиться какие-либо важные находки, имеющие принципиальное значе­ние. Соответствующее описание этих находок, придающее им статус эмпи­рического факта и удостоверяющее фактуальный статус и их значение, яв­ляется задачей именно настоящей стадии. Здесь тоже важную роль играет визуализация. Исследователь продумывает способы репрезентации качест­венного материала (слайды, фотографии, видеозаписи), снабжая его соот­ветствующими объяснениями, комментариями, расшифровкой.

На стадии обработки данных оценивается релевантность самого про­веденного исследования с точки зрения его валидности, верифицируемости, экстраполяционной достоверности. Фиксируются различного рода нарушения корреляции, нерешенные и необъяснимые моменты, анома­лии и исключения из обнаруженных регулярностей. Формулируются но­вые вопросы, требующие дальнейшей разработки и, может быть, продол­жения испытаний.

Среди специальных методов анализа данных важную роль играют раз­личные математические подходы и прежде всего методы математиче­ской статистики. Например, методы описательной статистики позволяют визуализировать то или иное распределение данных, выявлять его тенден­ции (скажем, среднее арифметическое), определять величину разброса значений (среднее квадратическое отклонение). В результате применения раз­личных статистических методов формируются статистические факты, ос­нованные на статистически достоверных заключениях, концентрирующие информацию об областях данных в целом и освобожденные от случайно­стей, присущих единичным данным. Статистические методы анализа дан­ных существенно облегчают задачу ученого; к тому же сегодня ученые мо­гут использовать для анализа данных удобные компьютерные программы. Специальные методы, пришедшие из статистики, помогают выбрать рацио­нальный дизайн исследований, эффективно обработать данные, повысить степень информативности и достоверности результатов.

Заметим также, что статистическая обработка данных не обязательно должна быть связана с оригинальным эмпирическим исследованием. Она может применяться к обширным массивам эмпирических данных, полу­ченных разными авторами и в разные времена. Такой статистический ана­лиз может иметь самостоятельное значение и служить важным источником научной информации. Например, в последнее время в медицинских науках получил распространение т.н. метаанализ, с помощью которого исследо­ватель изучает с единых позиций некоторую совокупность исследований на заранее выбранную тему, что позволяет как бы склеить разнородные исследования в единое целое и извлечь из них весьма ценные сведения.